
 

 

 

 

 

Applied econometrics:  

Corner solution responses, sample selection and count responses  

 

Måns Söderbom* 

University of Gothenburg 

Fall, 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* I apologize for any errors in these lecture notes. Feel free to contact me at 
mans.soderbom@economics.gu.se if you spot mistakes or if you have 
questions on the material in these notes. Thanks. 

mailto:mans.soderbom@economics.gu.se


 

 

 

 

 

 

CHAPTER 1:  

CORNER SOLUTION RESPONSES 

  



1. Tobit Estimation of Corner Solution Models

Reference: Wooldridge (2010), Chapter 17.1-17.6.3.

In this lecture we consider econometric issues that arise when the dependent variable is bounded but

continuous within the bounds:

lo � yi � hi;

where lo denotes the lower bound (limit) and hi the higher bound, and where these bounds are the

result of real economic constraints. The most common case is when a nonnegative response variable y

has a continuous distribution over strictly positive values but Pr (y = 0) > 0; resulting in a pileup of

observations of y at zero. You will often �nd this in micro data, e.g. household expenditure on education,

health, alcohol,...

When we are modeling a variable expressed as a fraction (percentage of output exported by �rms;

fraction of charitable contributions made to religious organizations, etc.), we may have lo = 0 and hi = 1,

in which case it makes sense to treat y as having a continuous distribution over the open interval (0,1).

We can think of this type of variable as a hybrid between a continuous variable (for which the linear

model is appropriate) and a binary variable (for which one would typically use a binary choice model).

Indeed, as we shall see, the econometric model designed to model corner solution variables looks like a

hybrid between OLS and the probit model. In what follows we focus on the case where lo = 0, hi =1,

however generalizing beyond this case is reasonably straightforward.

The distinction between censored and corner responses Unlike most other authors, Wooldridge

makes a clear distinction between "censored responses" and "corner responses". The word "censored"

implies that we are not observing the entire range of the response variable. For example, if our outcome

variable is the demand for tickets for a concert, we won�t observe demand whenever the concert sells out.

That is not the case for corner responses - these are the actual outcomes. For example, in a model

of charitable contributions the outcome might be zero but this does not mean that contributions are

"censored" at zero. The same econometric techniques can be used for analyzing a censored variable as
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for a corner response model, however the objects of interest are typically di¤erent.

Can we use linear regression if y is a corner response variable? Let y be a variable that is

equal to zero for some non-zero proportion of the population, and continuous and positive if not equal to

zero. As usual, we want to model y as a function of a set of variables x2; :::; xk - or in matrix notation:

x =

�
1 x2 x3 ::: xk

�
:

For binary choice models OLS can be a useful starting point (yielding the linear probability model), even

though the dependent variable is not continuous. We now have a variable which is �closer�to being a

continuous variable - it�s discrete in the sense that it is either in the corner (equal to zero) or not (in

which case it�s continuous). If we are interested in the e¤ect of xj on the mean response E (yjx), why

not use OLS?

Recall that there are a number of reasons why we may not prefer to estimate binary choice models

using OLS. For similar reasons OLS may not be an ideal estimator for corner response models:

� Based on OLS estimates we can get negative predictions (or, more generally, predictions out-

side the bounds lo; hi) which doesn�t make sense (if we are modelling household expenditure on

education, for instance, negative predicted values do not make sense).

� Conceptually, the idea that a corner solution variable is linearly related to a continuous independent

variable for all possible values is a bit suspect. It seems more likely that for observations close to the

corner (close to zero), changes in some continuous explanatory variable xj has a smaller e¤ect on the

outcome than for observations far away from the corner. So if we are interested in understanding

how y depends on xj among low values of y, linearity is not attractive.

� A third (and less serious) problem is that the residual u is likely to be heteroskedastic - but we can

deal with this by simply correcting the standard errors.

� A fourth and related problem is that, because the distribution of y has a �spike�at zero, the residual
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cannot be normally distributed. This means that OLS point estimates are unbiased, but inference

in small samples cannot be based on the usual suite of normality-based distributions such as the t

test.

All of this is very similar to the problems identi�ed with the linear probability model. Naturally, if for

some reason we feel these problems are not very important, we may opt for a linear regression approach.

In the special case where the model is saturated, so that the set of explanatory variables consists of

dummy variables representing each mutually exclusive and exhaustive category present in the data, the

OLS estimate of E(yjx) will be numerically identical to the sub-sample average of y for each category. No

assumptions about the functional form relationship between the dependent variable and the explanatory

variables are needed in this case, and negative predictions will never arise.

Example: Charitable contributions Example 17.1 in Wooldridge (2010) is a nice illustration of pos-

sible behavioral underpinnings of an empirical corner response model. Suppose we study the determinants

of charitable giving, and suppose the utility function of individual i is given by

utili (ci; q) = ci + ai log (1 + qi) ;

where c is consumption and q is charitable giving. The variable ai determines the marginal utility of

giving for individual i. Maximizing utility subject to the following constraints

ci + piqi = mi;

ci � 0;

mi � 0;
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where mi is income and pi is the price of a "unit" of charitable contributions, gives a solution for qi:

qi =

8>><>>:
0 if ai=pi � 1

ai=pi � 1 if ai=pi > 1

9>>=>>; ;

which we can write as

1 + qi = max (1; ai=pi) :

Now specify ai, the determinant of the marginal utility of giving, as

ai = exp (zi
 + ui) ;

where zi is a vector of explanatory variables 
 is a parameter vector, and ui is an unobservable. We can

now write

log (1 + qi) = max (0;zi
 � log (pi) + ui) :

The main insight from this little theoretical detour is that we have obtained a behavioral model (un-

derpinned by utility maximization) of q that recognizes that a corner response (q = 0) may be optimal

in theory. To take this (type of) model to the data, it would thus be useful to have an estimator that

recognizes the presence of corner outcomes too; that�s what tobit does.

1.1. Type I Tobit

We continue to focus on the case where there is one corner, at zero. We write our population model as

y = max (0;x� + u) ;

where the unobserved term u is assumed independent of x, mean-zero, homoskedastic and normally

distributed. These assumptions de�ne the type I Tobit
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It can sometimes be useful for certain derivations.(see below) to write y as a latent variable model,

y� = x� + u; (1.1)

yi = max (0; y�i ) :

Note however that y� is typically not a relevant quantity in corner response models (e.g. it�s not obvious

y� < 0 would be very meaningful in the context of the charity contributions example above). In contrast,

if your outcome variable is censored, it would be meaningful to think about the determinants of y�; in

that case we would be interested in E (y�jx).

As noted above, a corner response variable is a kind of hybrid: both discrete and continuous. The

discrete part is due to the piling up of observations at zero. Using the latent variable formulation above,

the probability that y is equal to zero can be written

Pr (y = 0jx) = Pr (y� � 0) ;

= Pr (x� + u � 0) ;

= Pr (u � �x�)

= �

�
�x�
�

�
(integrate; normal distribution)

Pr (y = 0jx) = 1� �
�
x�

�

�
(by symmetry),

exactly like the probit model. In contrast, if y > 0 then it is continuous:

y = x� + u:

It follows that the conditional density of y is equal to

f (yjx;�;�) = [1� � (xi�=�)]1[y(i)=0]
�
�

�
yi � xi�

�

��1[y(i)>0]
;
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where 1[a] is a dummy variable equal to one if a is true. Thus the contribution of observation i to the

sample log likelihood is

lnLi = 1[y(i)=0] log [1� � (xi�=�)] + 1[y(i)>0] log
�
�

�
yi � xi�

�

��
;

and the sample log likelihood is

lnL (�;�) =
NX
i=1

lnLi:

Estimation is done by means of maximum likelihood; as usual, we assume the sample has been randomly

drawn from the population.

1.1.1. Interpretation of Tobit parameters

How do we interpret the parameters �? We see straight away from the latent variable model that �j is

interpretable as the partial (marginal) e¤ects of xj on the conditional expected value of latent variable

y�:

@E (y�jx)
@xj

= �j ;

if xj is a continuous variable, and

E (y�jxj = 1)� E (y�jxj = 0) = �j

if xj is a dummy variable (of course if xj enters the model nonlinearly these expressions need to be

modi�ed accordingly). I have omitted i-subscripts for simplicity. If that�s what we want to know, then

we are home: all we need is an estimate of the relevant parameter �j .

The point emphasized by Wooldridge in chapter 17 is that that is not what we want to know, since

the latent variable y� is not our outcome variable of interest.

Typically we are interested in the partial e¤ect of xj on the expected actual outcome y; rather than
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on the latent variable. In fact there are two di¤erent potentially interesting marginal e¤ects, namely

@E (yjx)
@xj

; (Unconditional on y)

and

@E (yjx; y > 0)
@xj

: (Conditional on y>0)

We need to be clear on which of these we are interested in. Now let�s see what these marginal e¤ects

look like.

The marginal e¤ects on expected y, conditional on y positive. We want to derive

@E (yjx; y > 0)
@xj

:

Recall that the model can be written

y = max (y�; 0) ;

y = max (x� + u; 0) :

We begin by writing down E (yjx; y > 0):

E (yjy > 0;x) = E (x� + ujy > 0;x) ;

E (yjy > 0;x) = x� + E (ujy > 0;x) ;

E (yjy > 0;x) = x� + E (uju > �x�)

Because of the truncation (y is always positive, or, equivalently, u is always larger than �x�), dealing

with the second term is not as easy as it may seem. We begin by taking on board the following result for

normally distributed variables:
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� A useful result. If z follows a normal distribution with mean zero, and variance equal to one (i.e.

a standard normal distribution), then

E (zjz > c) = � (c)

1� � (c) ; (1.2)

where c is a constant (i.e. the lower bound here), � denotes the standard normal probability density,

and � is the standard normal cumulative density.

The error term u is not, in general, standard normal because the variance is not necessarily equal

to one, but by dividing and multiplying through with its standard deviation � we can transform u to

become standard normal:

E (yjy > 0; x) = x� + �E (u=�ju=� > �x�=�) :

That is, (u=�) is now standard normal, and so we can apply the above �useful result�, i.e. eq (1.2), and

write:

E (uju > �x�) = � � (�x�=�)
1� � (�x�=�) ;

and thus

E (yjy > 0;x) = x� + � � (�x�=�)
1� � (�x�=�) :

With slightly cleaner notation,

E (yjy > 0;x) = x� + � � (x�=�)
� (x�=�)

;

which is often written as

E (yjy > 0;x) = x� + �� (x�=�) ; (1.3)
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where the function � is de�ned as

� (z) =
� (z)

� (z)
:

in general, and known as the inverse Mills ratio function.

� Have a look at the inverse Mills ratio function in Section 1 in the appendix, Figure 1.

Equation (1.3) shows that the expected value of y, given that y is not zero, is equal to x� plus a

term �� (x�=�) which is strictly positive (how do we know that?).

We can now obtain the partial e¤ect with respect to a continuous explanatory variable xj :

@E (yjy > 0;x)
@xj

= �j + �
@� (x�=�)

@xj
;

= �j + �
�
�j=�

�
�0;

= �j
�
1 + �0

�
;

where �0 denotes the partial derivative of � with respect to (x�=�) (note: I am assuming of course that

xj is not functionally related to any other variable - i.e. it enters the model linearly - this means that I

don�t have to worry about higher-order terms). It is tedious but fairly easy to show that

�0 (z) = �� (z) [z + � (z)]

in general, hence

@E (yjy > 0;x)
@xj

= �j f1� � (x�=�) [x�=� + � (x�=�)]g :

This shows that the partial e¤ect of xj on E (yjy > 0;x) is not determined just by �j . In fact, it depends

on all parameters � in the model as well as on the values of all explanatory variables x, and the

standard deviation of the error term u. The term in f�g is often referred to as the adjustment factor,

and it can be shown that this is always larger than zero and smaller than one (why is this useful to

know?).
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It should be clear that, just as in the case for probits and logits, we need to evaluate the marginal

e¤ects at speci�c values of the explanatory variables. This should come as no surprise, since one of

the reasons we may prefer tobit to OLS is that we have reasons to believe the partial e¤ects may di¤er

depending on how close to the corner (zero) a given observation is (see above). In Stata we can use mfx

compute or margins to obtain estimates of marginal e¤ects. How this is done will be clearer in a moment.

Student exercise:

1. Write down the expression for @E(yjy>0;x)
@z1

if: i) x1 = log (z1); ii) x1 = z1, x2 = z21 ; iii) x1 = z1,

x2 = z1z2.

2. If x1 = z1, how would the elasticity of E (yjy > 0;x) with respect to z1 look like?

3. If x1 is a dummy variable, what�s the partial e¤ect of interest?

The marginal e¤ects on expected y, unconditional on the value of y Recall:

y = max (y�; 0) ;

y = max (x� + u; 0) :

I now need to derive

@E (yjx)
@xj

:

We write E (yjx) as follows:

E (yjx) = � (�x�=�) � E (yjy = 0;x) + � (x�=�) � E (yjy > 0;x) ;

E (yjx) = � (�x�=�) � 0 + � (x�=�) � E (yjy > 0;x) ;

E (yjx) = � (x�=�) � E (yjy > 0;x) ;
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i.e. the probability that y is positive times the expected value of y given that y is indeed positive. Recall

that E (yjy > 0;x) was derived above, so we know what the expression looks like. Using the product rule

for di¤erentiation,

@E (yjx)
@xj

= �(x�=�) � @E (yjy > 0;x)
@xj

+ � (x�=�)
�j
�
� E (yjy > 0;x) ;

where

@E (yjy > 0;x)
@xj

= �j f1� � (x�=�) [x�=� + � (x�=�)]g ;

and

E (yjy > 0;x) = x� + �� (x�=�) :

Hence

@E (yjx)
@xj

= �(x�=�) � �j f1� � (x�=�) [x�=� + � (x�=�)]g

+� (x�=�)
�j
�
� [x� + �� (x�=�)] ;

which looks complicated but the good news is that several of the terms cancel out, so that:

@E (yjx)
@xj

= �j� (x�=�) : (1.4)

Student exercise: Prove that eq. (1.4) is true.

Equation (1.4) has a straightforward interpretation: the marginal e¤ect of xj on the expected value

of y, conditional on the vector x, is simply the parameter �j times the probability that y is larger than

zero. Of course, this probability is smaller than one, so it follows immediately that: i) the marginal e¤ect

is strictly smaller than the parameter �j ; ii) that its sign is determined by the sign of �j .

Example: Modelling Annual Hours Worked. Section 2 in the appendix replicates the results

discussed in Example 17.2, Wooldridge (2010), pp. 678-680. It also shows how to obtain the relevant
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partial e¤ects using the Stata margins command.

2. Speci�cation Issues in Tobit Models

Neglected heterogeneity doesn�t pose a problem if the omitted variable, q, is normally distributed and

independent of the vector x; we can estimate the APEs by simply ignoring the heterogeneity. Other forms

of neglected heterogeneity may cause problems - see Wooldridge, Section 17.5.1 for a brief discussion.

If one of the explanatory variables of the tobit model is endogenous, the tobit estimator is incon-

sistent. Smith and Blundell (1986) propose a 2-step procedure that is analogous to the Rivers-Vuoung

method for binary response models and involves estimating the residual component of the endogenous

explanatory variable (v̂2) in a �rst stage and then adding v̂2 to the set of explanatory variables in the tobit

model. The usual t-statistic on v̂2 reported by Tobit provides a simple test of the null that endogeneity is

not a problem. Section 3 in the appendix shows the mechanics through an example. The Smith-Blundell

approach is implemented by the Stata command ivtobit depvar [varlist1], twostep. Note that

the endogenous explanatory variable is required to be continuous for this approach to work; if it is

not continuous, the likelihood function will have to be adjusted to re�ect the nature of the endogenous

explanatory variable (e.g. it may be discrete, binary, a corner response variable, etc.)

Heteroskedasticity and nonnormality imply that the Tobit estimator �̂ of � is inconsistent. This

should come as no surprise, given heteroskedasticity and nonnormality change the functional forms for

E (yjx) and E (yjy > 0;x) - recall,

E (yjx) = � (x�=�) � E (yjy > 0;x) ;

E (yjy > 0;x) = x� + �� (x�=�) ;

which clearly make use of normality and homoskedasticity. Wooldridge emphasizes that the important

point is not whether � is estimated with bias, but rather whether our Tobit-based estimates of the partial

e¤ects of interest are misleading. In general, however, the tobit-based formulae for partial e¤ects will be
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incorrect under normality and/or homoskedasticity, so it is appropriate to carry out some speci�cation

tests. Conditional moment tests are convenient to this end. To illustrate the basic idea, suppose we want

to test for heteroskedasticity. Our null hypothesis is that the variance of u is constant and the alternative

hypothesis is that the variance of u varies with some explanatory variable xj :

H0 : E
�
xj�

2
�
= 0

H1 : E
�
xj�

2
i

�
6= 0:

For linear regression, we can estimate u simply as the di¤erence between observed y and xb�, and then
use û2 as our estimate of �2; we can then test whether xj is signi�cant in a regression of û2 on xj and

the other x-variables in the model (plus, possibly, higher order terms and interaction terms; cf. White�s

test for heteroskedasticity). For Tobit, however, this simple approach is not feasible, since u cannot be

estimated simply as the di¤erence y and xb�, since y is speci�ed as
y = max (x� + u; 0) ;

which is nonlinear. We therefore estimate �2 based on generalized residuals, which are nonlinear functions

of y and x�. The null hypothesis above, for example, can be tested against the alternative hypothesis

by investigating whether the sample analogue of

E
�
u2i jyi

�
� �2

�2
= �1[yi=0]

xi�

�
� (xi�=�) + 1[yi>0]

 �
yi � xi�

�

�2
� 1
!

covaries with xj . See Pagan and Vella (1989) for details. You can �nd on my website an ado �le called cmt

which carries out conditional moment tests for normality and heteroskedasticity. If I use this program

to test the tobit speci�cation used for analyzing hours worked, I can reject homoskedasticity at the 1%

level (p-value 0.006) and normality at the 5% level (p-value 0.06). A simple White test following OLS

estimation of the model strongly suggests the OLS error term is heteroskedastic too.
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How can we proceed if the type I Tobit appears to be misspeci�ed? If heteroskedasticity is the

problem, we might allow for non-constant variance of u, e.g. by specifying u as normally distributed

with mean zero and variance �2 exp (x1�). Alternatively, we might opt for Powell�s (1984) censored least

absolute deviations (CLAD) estimator which estimates � by solving

min
�

NX
i=1

jyi �max (0;xi�) j:

This is attractive primarily because no distributional assumption is made about u. This estimator can

be derived from the latent variable model if we assume the median of u given x is equal to zero, so that

Med (yjx) = max (0;x�) .

In other words we are modeling the conditional median of y rather than the expected value. See section

17.5.2 in Wooldridge for details on this estimator.

3. Two-Part Models

One implication of the type I Tobit model is that the partial e¤ects of an explanatory variable on

Pr (y > 0jx), E (yjx) and E (yjx;y > 0) must have the same signs. This may be restrictive: as discussed

by Wooldridge, age may have positive e¤ect on the likelihood of having life insurance but perhaps a

negative e¤ect on the amount of life insurance coverage. Such a situation would violate the type I Tobit

model assumptions.

Another restriction implied by Tobit type I is that the relative e¤ects of two continuous explanatory

variables xj and xh on Pr (y > 0jx), E (yjx) and E (yjx;y > 0) are identical and equal to �j=�h.

If we want to allow for separate mechanisms that determine the participation decision (y = 0 vs.

y > 0) and the amount decision (the magnitude of y when it is positive), we can use a two-part model.

Two-part models allow separate mechanisms to determine the �participation decision�(y = 0 vs. y > 0)

and the �amount decision�(the magnitude of y when it is positive). We will discuss three distinct two-part
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models in this section. First, we introduce some important concepts.

� De�ne s = 1 [y > 0], i.e. s is dummy = 1 if y is positive and 0 if y is zero.

� Let w� be a continuously distributed, nonnegative latent variable, and assume

y = s � w�

� Assume s and w� are independent, conditional on explanatory variables x. Implications:

�E (yjx; s) = s � E (w�jx; s) = s � E (w�jx)

�E (yjx; s = 1) = E (yjx; y > 0) = E (w�jx)

�E (yjx) = P (s = 1jx)E (w�jx)

which will be useful later. The independence assumption is of course potentially strong, but we will

see below how it can be relaxed.

3.1. Truncated normal hurdle model

The �rst two-part model we will consider is known as the truncated normal hurdle model (Cragg,

1971). The �rst part of the two-part model is a probit model of participation:

Pr (s = 1jx) = � (x
) ;

where � (:) is the cumulative density function for the standard normal distribution, and 
 is a vector of

parameters. The second part is truncated regression, which is a model of y given that y > 0:

y = x� + u if x� + u > 0;

where u is mean-zero, and normally distributed with constant variance �2. Underlying this model is an

assumption that the latent variable w� = x�+u has a truncated normal distribution, hence it is bounded
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below at zero (thus u is bounded below at �x�). Negative predicted outcomes of y are thus ruled out,

which is an attractive feature of the model.

The truncated hurdle model is obtained by estimating the participation decision using probit with all

observations included (this yields probit estimates of the parameter vector 
), and the amount decision

using truncated regression, with only the positive observations included (yielding estimates of �).1 One

very nice feature of this model is that, in this special case where 
 = �=�, it is equivalent to Tobit type

I. Testing H0 : 
 = �=� against the alternative H1 : 
 6= �=� is straightforward (e.g. by means of a log

likelihood ratio test). Section 4 in the appendix shows estimation results based on the �Mroz�dataset.

Comparing the sum of the log likelihood values for the probit and truncated regression to that for tobit

type I (appendix section 2), we obtain an LR statistic equal to 54.28, which with 8 d.f. implies rejection

of the null at any signi�cance level.

The expected values are straightforward extensions of the standard tobit models:

E (yjx;y > 0) = x� + E (uju > �x�)

E (yjx;y > 0) = x� + �� (x�=�) ;

and hence

E (yjx) = � (x
) [x� + �� (x�=�)] :

It follows that the expression for @E(yjx)@xj
is somewhat involved - see equation (17.48) in Wooldridge (2010).

Obtaining standard errors for estimated @E(yjx)
@xj

is probably best done by means of bootstrapping.

Finally, it is important to understand that, while this estimator certainly is more �exible than tobit,

the distributional assumptions (normality, homoskedasticity) are still strong.

1The user-written command craggit could be used to obtain estimates of all model parameters (this program would
have to be downloaded; Stata users can �nd the program by typing ��ndit craggit�in the command window).
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3.2. Lognormal hurdle model

Clearly for some outcome variables, assuming a lognormal distribution can be more appropriate than a

(truncated) normal distribution. Consider the following speci�cation:

y = s � w� = 1 [x
 + v > 0] exp (x� + u) ;

where (u; v) is independent of x with a bivariate normal distribution, and u and v are independent. This

implies that

ujx � Normal
�
0; �2

�
;

and thus the latent variable w� = exp (x� + u) has a lognormal distribution, and y conditional on

(x;y > 0) has a lognormal distribution. It follows that

E (yjx; y > 0) = exp
�
x�+�2=2

�
;

and

E (yjx) = � (x
) exp
�
x�+�2=2

�
:

Estimation of the parameters is easy: probit of si on x is a consistent estimator of 
, while OLS of

log (yi) on x is a consistent estimator of �. If we are primarily interested in estimating e.g.
@E(yjx)
@xj

, and

its associated standard error, we can easily do so if we tweak Stata�s heckman command. More on this

in the next subsection.

Exercise 1. Obtain the analytical expression for @E(yjx)
@xj

:

3.3. Exponential Type II Tobit Model

The assumption that s and w� are independent conditional on x is potentially strong. It could well be

that the unobservable factors determining s are in fact correlated with the unobservables determining

w�: In that case, the lognormal hurdle model is mis-speci�ed. Fortunately, we can modify the lognormal
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hurdle model to allow for such a correlation. Wooldridge (section 17.6.3) refers to this modi�ed model

as the exponential type II Tobit (ET2T) model. If you are familiar with the �Heckit�sample selection

model, you will see that the likelihood function of ET2T is the same as that for Heckit. But interpretation

di¤ers: Heckit is used to correct for the fact that data on your outcome variable of interest is partially

missing, while ET2T is used to model a corner response variable. This distinction is somewhat subtle,

and we shall discuss it again after we have covered the Heckit model (not this lecture).

The ET2T model is speci�ed as

y = s � w� = 1 [x
 + v > 0] exp (x� + u) ;

where (u; v) is independent of x with a bivariate normal distribution, where u and v are potentially

correlated. The correlation between u and v is captured by a parameter �. In other words, the ET2T

model is just like the lognormal hurdle model except that there is now one more parameter � measuring

the correlation between u and v: The log likelihood function for the model is as follows (see pp. 697-8 in

Wooldridge, 2010, for the derivation, which is somewhat complicated):

li (�) = 1 [yi = 0] log (1� � (xi
))

+1 [yi > 0] (Ai +Bi � log � � log (yi))

where

Ai = log�

 
xi 
+ �=� (log (yi)� xi�)p

1� �2

!

Bi = log

�
�

�
log (yi)� xi�

�

��
:

It is straightforward to verify that in the special case where � = 0 this reduces to the lognormal hurdle

likelihood (eq. 17.55 in Wooldridge). Hence, ET2T can be considered more general than the lognormal

hurdle model. Unfortunately, the ET2T model can be very poorly identi�ed if the set of explanatory
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variables determining selection is the same as the set of variables determining w�. We will return to this

important issue when discussing sample selection models.

Now return to our objects of interest, i.e. @E(yjx)@xj
. It can be shown that

E (yjx) = � (x
+��) exp
�
x� + :5�2

�
:

(To obtain this expression, note �rst that E (yjx) = � (x
)E (yjx; y > 0) : Obtaining an expression for

E (yjx; y > 0) is not entirely straightforward since we are dealing with a truncated log normal distribution

- see e.g. Fact 21.72 in Söderlind2 for details on how to proceed.) Clearly, if � = 0, this reduces to

E (yjx) = � (x
) exp
�
x� + :5�2

�
;

i.e. the lognormal hurdle model.

Estimation of the ET2T model can be done in Stata using the heckman command. Helpfully, if for

whatever reason we prefer the lognormal hurdle model we can estimate this model using heckman with

the constraint � = 0 imposed. Moreover, if we use the post-estimation command margins we can easily

obtain @E(yjx)
@xj

with or without � = 0 imposed. Applications are shown in the appendix, sections 5 and 6.

2http://home.datacomm.ch/paulsoderlind/Courses/OldCourses/EcmXSta.pdf
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2.  OLS and Tobit Estimation of Annual Hours Worked 
 
This section replicates the results discussed in Example 17.2, Wooldridge (2010), pp. 678-680. It also 
shows how to obtain the relevant partial effects using the Stata margins command. 
 
. use MROZ.DTA", clear 
 
.  
. summarize 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        inlf |       753    .5683931    .4956295          0          1 
       hours |       753    740.5764    871.3142          0       4950 
     kidslt6 |       753    .2377158     .523959          0          3 
     kidsge6 |       753    1.353254    1.319874          0          8 
         age |       753    42.53785    8.072574         30         60 
-------------+-------------------------------------------------------- 
        educ |       753    12.28685    2.280246          5         17 
        wage |       428    4.177682    3.310282      .1282         25 
     repwage |       753    1.849734    2.419887          0       9.98 
      hushrs |       753    2267.271    595.5666        175       5010 
      husage |       753    45.12085    8.058793         30         60 
-------------+-------------------------------------------------------- 
     huseduc |       753    12.49137    3.020804          3         17 
     huswage |       753    7.482179    4.230559      .4121     40.509 
      faminc |       753    23080.59     12190.2       1500      96000 
         mtr |       753    .6788632    .0834955      .4415      .9415 
    motheduc |       753    9.250996    3.367468          0         17 
-------------+-------------------------------------------------------- 
    fatheduc |       753    8.808765     3.57229          0         17 
        unem |       753    8.623506    3.114934          3         14 
        city |       753    .6427623    .4795042          0          1 
       exper |       753    10.63081     8.06913          0         45 
    nwifeinc |       753    20.12896     11.6348  -.0290575         96 
-------------+-------------------------------------------------------- 
       lwage |       428    1.190173    .7231978  -2.054164   3.218876 
     expersq |       753    178.0385    249.6308          0       2025 
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2.1 OLS results 
 
. reg hours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 
 
      Source |       SS       df       MS              Number of obs =     753 
-------------+------------------------------           F(  7,   745) =   38.50 
       Model |   151647606     7  21663943.7           Prob > F      =  0.0000 
    Residual |   419262118   745  562767.944           R-squared     =  0.2656 
-------------+------------------------------           Adj R-squared =  0.2587 
       Total |   570909724   752  759188.463           Root MSE      =  750.18 
 
--------------------------------------------------------------------------------- 
          hours |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -3.446636      2.544    -1.35   0.176    -8.440898    1.547626 
           educ |   28.76112   12.95459     2.22   0.027     3.329283    54.19297 
          exper |   65.67251   9.962983     6.59   0.000     46.11365    85.23138 
                | 
c.exper#c.exper |  -.7004939   .3245501    -2.16   0.031    -1.337635   -.0633524 
                | 
            age |  -30.51163   4.363868    -6.99   0.000    -39.07858   -21.94469 
        kidslt6 |  -442.0899    58.8466    -7.51   0.000    -557.6148    -326.565 
        kidsge6 |  -32.77923   23.17622    -1.41   0.158     -78.2777    12.71924 
          _cons |   1330.482   270.7846     4.91   0.000     798.8906    1862.074 
--------------------------------------------------------------------------------- 
 
 
>> Since experience enters the model with a quadratic, the partial effect is 65.67 – 2*0.70*exper. The 

sample average of exper is 10.63, hence the average partial effect is 50.8. Notice that the average 

partial effect (APE) coincides with the partial effect at the average (PEA) in linear models for a 

variable entering with a quadratic. If we use factor variable syntax, in this case entering the quadratic 

term as c.exper#c.exper we can use margins to obtain the APE and a standard error directly: 

 
 
. margins, dydx (*)  
 
Average marginal effects                          Number of obs   =        753 
Model VCE    : OLS 
 
Expression   : Linear prediction, predict() 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -3.446636      2.544    -1.35   0.175    -8.432784    1.539513 
        educ |   28.76112   12.95459     2.22   0.026       3.3706    54.15165 
       exper |   50.77888   4.448188    11.42   0.000     42.06059    59.49716 
         age |  -30.51163   4.363868    -6.99   0.000    -39.06466   -21.95861 
     kidslt6 |  -442.0899    58.8466    -7.51   0.000    -557.4271   -326.7527 
     kidsge6 |  -32.77923   23.17622    -1.41   0.157    -78.20378    12.64533 
------------------------------------------------------------------------------ 
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2. Tobit results 
 
. tobit hours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6, ll(0) 
 
Tobit regression                                  Number of obs   =        753 
                                                  LR chi2(7)      =     271.59 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -3819.0946                       Pseudo R2       =     0.0343 
 
--------------------------------------------------------------------------------- 
          hours |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -8.814243   4.459096    -1.98   0.048    -17.56811   -.0603724 
           educ |   80.64561   21.58322     3.74   0.000     38.27453    123.0167 
          exper |   131.5643   17.27938     7.61   0.000     97.64231    165.4863 
                | 
c.exper#c.exper |  -1.864158   .5376615    -3.47   0.001    -2.919667   -.8086479 
                | 
            age |  -54.40501   7.418496    -7.33   0.000    -68.96862    -39.8414 
        kidslt6 |  -894.0217   111.8779    -7.99   0.000    -1113.655   -674.3887 
        kidsge6 |    -16.218   38.64136    -0.42   0.675    -92.07675    59.64075 
          _cons |   965.3053   446.4358     2.16   0.031     88.88528    1841.725 
----------------+---------------------------------------------------------------- 
         /sigma |   1122.022   41.57903                      1040.396    1203.647 
--------------------------------------------------------------------------------- 
  Obs. summary:        325  left-censored observations at hours<=0 
                       428     uncensored observations 
                         0 right-censored observations 
 
 

  Tobit coefficient estimates are the same sign as the corresponding OLS estimates. 

  Similar statistical significance. 

  Tobit coefficients are much higher than their OLS coefficients – but direct comparisons are 

misleading. Why? 

 
2.1 Partial effects on E(y|x)  
  
 To obtain tobit-based partial effects that are comparable to those implied by OLS, we look at the 

effects of  changing x-variables on E(y|x). As shown in the lecture notes above, for continuous, 
non-interacted, variables, the formula for the partial effect looks like this: 

 
The Stata margins command computes estimates of these partial effects and their associated 
standard errors:  

 
. margins, dydx (*) predict(ystar(0,.))  
 
  

lower limit of y is zero 
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Average marginal effects                          Number of obs   =        753 
Model VCE    : OIM 
 
Expression   : E(hours*|hours>0), predict(ystar(0,.)) 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -5.188622    2.62141    -1.98   0.048    -10.32649   -.0507525 
        educ |   47.47311    12.6214     3.76   0.000     22.73562    72.21061 
       exper |   48.79312   3.587271    13.60   0.000      41.7622    55.82404 
         age |  -32.02624   4.292112    -7.46   0.000    -40.43862   -23.61385 
     kidslt6 |  -526.2779   64.70622    -8.13   0.000    -653.0997    -399.456 
     kidsge6 |   -9.54694   22.75225    -0.42   0.675    -54.14054    35.04665 
------------------------------------------------------------------------------ 
 
 
We now have estimates that are directly comparable to the OLS results above. We see, for example, 
that one more year of education is estimated to result in 47.5 more hours of work per year, on average, 
based on the Tobit results, while the OLS estimate of the partial effect is just 28.8. Moreover, the 
levels of statistical significance differ somewhat across the estimators. 
 
If for some reason we prefer partial effects evaluated at the average, these can be obtained as follows: 
 
. margins, dydx (*) predict(ystar(0,.)) atmeans 
 
Conditional marginal effects                      Number of obs   =        753 
Model VCE    : OIM 
 
Expression   : E(hours*|hours>0), predict(ystar(0,.)) 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
at           : nwifeinc        =    20.12896 (mean) 
               educ            =    12.28685 (mean) 
               exper           =    10.63081 (mean) 
               age             =    42.53785 (mean) 
               kidslt6         =    .2377158 (mean) 
               kidsge6         =    1.353254 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -5.687381   2.877882    -1.98   0.048    -11.32793   -.0468357 
        educ |   52.03649   13.82013     3.77   0.000     24.94954    79.12345 
       exper |   59.31728   5.694847    10.42   0.000     48.15558    70.47897 
         age |  -35.10478   4.669466    -7.52   0.000    -44.25676   -25.95279 
     kidslt6 |  -576.8666   70.92986    -8.13   0.000    -715.8866   -437.8466 
     kidsge6 |  -10.46464   24.93972    -0.42   0.675    -59.34561    38.41632 
------------------------------------------------------------------------------ 
 
 
For some reason, these turn out to be larger, in absolute terms, than the average partial effects. Given 
that the APE are more straightforward to interpret, I would have more faith in those. 
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2.2 Partial effects on E(y|x,y>0)  
 
Finally, we look at estimates of average partial effects on the expected value of y given that y is 
positive. Such estimates can be obtained by modifying the margins syntax as can be seen below. In 
addition to APE, I also show partial effects evaluated at sample averages. 
 
. margins, dydx(*) predict(e(0,.))  
 
Average marginal effects                          Number of obs   =        753 
Model VCE    : OIM 
 
Expression   : E(hours|hours>0), predict(e(0,.)) 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -3.968784   2.007582    -1.98   0.048    -7.903573   -.0339953 
        educ |   36.31225   9.703038     3.74   0.000     17.29465    55.32986 
       exper |    37.5935   2.965955    12.68   0.000     31.78034    43.40667 
         age |  -24.49691   3.362492    -7.29   0.000    -31.08728   -17.90655 
     kidslt6 |  -402.5507   50.74877    -7.93   0.000    -502.0164   -303.0849 
     kidsge6 |  -7.302468   17.40427    -0.42   0.675     -41.4142    26.80927 
------------------------------------------------------------------------------ 
 
. margins, dydx(*) predict(e(0,.)) atmeans 
 
Conditional marginal effects                      Number of obs   =        753 
Model VCE    : OIM 
 
Expression   : E(hours|hours>0), predict(e(0,.)) 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
at           : nwifeinc        =    20.12896 (mean) 
               educ            =    12.28685 (mean) 
               exper           =    10.63081 (mean) 
               age             =    42.53785 (mean) 
               kidslt6         =    .2377158 (mean) 
               kidsge6         =    1.353254 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -3.987413   2.017641    -1.98   0.048    -7.941917   -.0329086 
        educ |   36.48269   9.689266     3.77   0.000     17.49208    55.47331 
       exper |   41.58724   3.988059    10.43   0.000     33.77079    49.40369 
         age |   -24.6119   3.273616    -7.52   0.000    -31.02807   -18.19573 
     kidslt6 |  -404.4401   49.72179    -8.13   0.000    -501.8931   -306.9872 
     kidsge6 |  -7.336744   17.48515    -0.42   0.675    -41.60701    26.93352 
------------------------------------------------------------------------------ 
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3. Testing exogeneity of other income in the hours equation 
 
 
Here is an illustration of the two-step procedure proposed by Smith and Blundell (1986): 
 
Step 1 
 
. reg nwifeinc huseduc educ exper c.exper#c.exper age kidslt6 kidsge6 
 
      Source |       SS       df       MS              Number of obs =     753 
-------------+------------------------------           F(  7,   745) =   27.13 
       Model |  20676.7705     7  2953.82436           Prob > F      =  0.0000 
    Residual |  81120.3451   745  108.886369           R-squared     =  0.2031 
-------------+------------------------------           Adj R-squared =  0.1956 
       Total |  101797.116   752  135.368505           Root MSE      =  10.435 
 
--------------------------------------------------------------------------------- 
       nwifeinc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
        huseduc |   1.178155   .1609449     7.32   0.000     .8621956    1.494115 
           educ |   .6746951   .2136829     3.16   0.002     .2552029    1.094187 
          exper |  -.3129877   .1382549    -2.26   0.024    -.5844034   -.0415721 
                | 
c.exper#c.exper |  -.0004776   .0045196    -0.11   0.916    -.0093501     .008395 
                | 
            age |   .3401521   .0597084     5.70   0.000     .2229354    .4573687 
        kidslt6 |   .8262719   .8183785     1.01   0.313    -.7803305    2.432874 
        kidsge6 |   .4355289   .3219888     1.35   0.177    -.1965845    1.067642 
          _cons |  -14.72048   3.787326    -3.89   0.000    -22.15559   -7.285383 
--------------------------------------------------------------------------------- 
 
. predict v2hat, res 
 
. tobit hours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 v2hat, ll(0) 
 
Tobit regression                                  Number of obs   =        753 
                                                  LR chi2(8)      =     273.76 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -3818.0118                       Pseudo R2       =     0.0346 
 
--------------------------------------------------------------------------------- 
          hours |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -31.48215    16.0376    -1.96   0.050    -62.96641    .0021189 
           educ |   116.7814   32.75978     3.56   0.000     52.46891    181.0939 
          exper |   124.3488   17.87502     6.96   0.000     89.25736    159.4402 
                | 
c.exper#c.exper |    -1.8972   .5371614    -3.53   0.000     -2.95173   -.8426702 
                | 
            age |  -46.89244   8.957672    -5.23   0.000    -64.47773   -29.30716 
        kidslt6 |  -867.9131   112.9024    -7.69   0.000    -1089.558   -646.2684 
        kidsge6 |   -6.32605   39.16561    -0.16   0.872    -83.21414    70.56204 
          v2hat |   24.41832   16.58452     1.47   0.141    -8.139637    56.97628 
          _cons |   722.1032    475.689     1.52   0.129    -211.7472    1655.954 
----------------+---------------------------------------------------------------- 
         /sigma |   1119.844   41.49319                      1038.387    1201.302 
--------------------------------------------------------------------------------- 
  Obs. summary:        325  left-censored observations at hours<=0 
                       428     uncensored observations 
                         0 right-censored observations 
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3.1 Extension: Nonlinear control function 
 
. ge nlv2hat=v2hat^2-r(sd)^2 
 
.  
. tobit hours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 v2hat 
nlv2hat, ll(0) 
 
Tobit regression                                  Number of obs   =        753 
                                                  LR chi2(9)      =     273.88 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -3817.9538                       Pseudo R2       =     0.0346 
 
--------------------------------------------------------------------------------- 
          hours |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -31.50841   16.04047    -1.96   0.050    -62.99839    -.018436 
           educ |   115.6293   32.93191     3.51   0.000     50.97881    180.2799 
          exper |   124.7863   17.92539     6.96   0.000     89.59591    159.9766 
                | 
c.exper#c.exper |  -1.904637   .5377187    -3.54   0.000    -2.960264   -.8490106 
                | 
            age |  -47.09241    8.97805    -5.25   0.000    -64.71774   -29.46708 
        kidslt6 |  -871.1396   113.3374    -7.69   0.000    -1093.639   -648.6403 
        kidsge6 |  -6.472582   39.16835    -0.17   0.869    -83.36623    70.42106 
          v2hat |   23.05771   17.05897     1.35   0.177    -10.43173    56.54715 
        nlv2hat |   .0609493    .178337     0.34   0.733    -.2891544    .4110529 
          _cons |   742.8585   479.5567     1.55   0.122    -198.5868    1684.304 
----------------+---------------------------------------------------------------- 
         /sigma |   1119.887   41.49608                      1038.423     1201.35 
--------------------------------------------------------------------------------- 
  Obs. summary:        325  left-censored observations at hours<=0 
                       428     uncensored observations 
                         0 right-censored observations 
 
. test v2hat nlv2hat 
 
 ( 1)  [model]v2hat = 0 
 ( 2)  [model]nlv2hat = 0 
 
       F(  2,   744) =    1.14 
            Prob > F =    0.3194 
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4. The truncated normal hurdle model 
 
. probit anyhours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 
 
Probit regression                                 Number of obs   =        753 
                                                  LR chi2(7)      =     227.14 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -401.30219                       Pseudo R2       =     0.2206 
 
--------------------------------------------------------------------------------- 
       anyhours |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378 
           educ |   .1309047   .0252542     5.18   0.000     .0814074     .180402 
          exper |   .1233476   .0187164     6.59   0.000     .0866641    .1600311 
                | 
c.exper#c.exper |  -.0018871      .0006    -3.15   0.002     -.003063   -.0007111 
                | 
            age |  -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376 
        kidslt6 |  -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029 
        kidsge6 |    .036005   .0434768     0.83   0.408     -.049208    .1212179 
          _cons |   .2700768    .508593     0.53   0.595    -.7267473    1.266901 
--------------------------------------------------------------------------------- 
 
. truncreg hours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 if 
anyhours==1, ll(0) 
 
Truncated regression 
Limit:   lower =          0                             Number of obs =    428 
         upper =       +inf                             Wald chi2(7)  =  59.05 
Log likelihood = -3390.6476                             Prob > chi2   = 0.0000 
 
--------------------------------------------------------------------------------- 
          hours |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |   .1534399   5.164279     0.03   0.976    -9.968361    10.27524 
           educ |  -29.85254   22.83935    -1.31   0.191    -74.61684    14.91176 
          exper |   72.62273   21.23628     3.42   0.001     31.00039    114.2451 
                | 
c.exper#c.exper |  -.9439967   .6090283    -1.55   0.121     -2.13767    .2496769 
                | 
            age |  -27.44381   8.293458    -3.31   0.001    -43.69869   -11.18893 
        kidslt6 |  -484.7109   153.7881    -3.15   0.002      -786.13   -183.2918 
        kidsge6 |  -102.6574   43.54347    -2.36   0.018    -188.0011   -17.31379 
          _cons |   2123.516   483.2649     4.39   0.000     1176.334    3070.697 
----------------+---------------------------------------------------------------- 
         /sigma |    850.766   43.80097    19.42   0.000     764.9177    936.6143 
--------------------------------------------------------------------------------- 
 
 
>> Judging from these results, does the type I tobit model considered earlier appear correctly 
specified? If not, why not? 
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5. Lognormal hurdle model 
 
. probit anyhours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 
 
Probit regression                                 Number of obs   =        753 
                                                  LR chi2(7)      =     227.14 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -401.30219                       Pseudo R2       =     0.2206 
 
--------------------------------------------------------------------------------- 
       anyhours |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378 
           educ |   .1309047   .0252542     5.18   0.000     .0814074     .180402 
          exper |   .1233476   .0187164     6.59   0.000     .0866641    .1600311 
                | 
c.exper#c.exper |  -.0018871      .0006    -3.15   0.002     -.003063   -.0007111 
                | 
            age |  -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376 
        kidslt6 |  -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029 
        kidsge6 |    .036005   .0434768     0.83   0.408     -.049208    .1212179 
          _cons |   .2700768    .508593     0.53   0.595    -.7267473    1.266901 
--------------------------------------------------------------------------------- 
 
. ge lhours=ln(hours) 
 
. reg lhours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 if anyhours==1 
 
      Source |       SS       df       MS              Number of obs =     428 
-------------+------------------------------           F(  7,   420) =   11.90 
       Model |  66.3633428     7  9.48047755           Prob > F      =  0.0000 
    Residual |  334.513835   420  .796461511           R-squared     =  0.1655 
-------------+------------------------------           Adj R-squared =  0.1516 
       Total |  400.877178   427   .93882243           Root MSE      =  .89245 
 
--------------------------------------------------------------------------------- 
         lhours |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
       nwifeinc |  -.0019676   .0044436    -0.44   0.658    -.0107021    .0067668 
           educ |  -.0385626   .0202098    -1.91   0.057    -.0782876    .0011624 
          exper |    .073237   .0179004     4.09   0.000     .0380514    .1084225 
                | 
c.exper#c.exper |   -.001233   .0005378    -2.29   0.022    -.0022902   -.0001759 
                | 
            age |  -.0236706    .007248    -3.27   0.001    -.0379175   -.0094237 
        kidslt6 |   -.585202   .1186066    -4.93   0.000    -.8183386   -.3520654 
        kidsge6 |  -.0694175   .0373355    -1.86   0.064    -.1428053    .0039703 
          _cons |   7.896267   .4260789    18.53   0.000     7.058755     8.73378 
--------------------------------------------------------------------------------- 
. disp e(ll) 

-554.56647 

(this is the log likelihood value associated with the OLS estimator) 
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I can obtain exactly these results using the heckman command with rho=0 imposed: 
 
 
constraint 1 [athrho]_b[_cons] = 0 
 
heckman lhours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6, 
select(nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6)  constraint(1) 
 
 
Heckman selection model                         Number of obs      =       753 
(regression model with sample selection)        Censored obs       =       325 
                                                Uncensored obs     =       428 
 
                                                Wald chi2(7)       =     84.91 
Log likelihood = -955.8687                      Prob > chi2        =    0.0000 
 
 ( 1)  [athrho]_cons = 0 
--------------------------------------------------------------------------------- 
         lhours |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
lhours          | 
       nwifeinc |  -.0019676   .0044019    -0.45   0.655    -.0105951    .0066599 
           educ |  -.0385626     .02002    -1.93   0.054    -.0778011     .000676 
          exper |    .073237   .0177323     4.13   0.000     .0384822    .1079917 
                | 
c.exper#c.exper |   -.001233   .0005328    -2.31   0.021    -.0022773   -.0001888 
                | 
            age |  -.0236706   .0071799    -3.30   0.001     -.037743   -.0095981 
        kidslt6 |   -.585202   .1174929    -4.98   0.000    -.8154839   -.3549201 
        kidsge6 |  -.0694175    .036985    -1.88   0.061    -.1419067    .0030717 
          _cons |   7.896267   .4220781    18.71   0.000      7.06901    8.723525 
----------------+---------------------------------------------------------------- 
select          | 
       nwifeinc |  -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378 
           educ |   .1309047   .0252542     5.18   0.000     .0814074     .180402 
          exper |   .1233476   .0187164     6.59   0.000     .0866641    .1600311 
                | 
c.exper#c.exper |  -.0018871      .0006    -3.15   0.002     -.003063   -.0007111 
                | 
            age |  -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376 
        kidslt6 |  -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029 
        kidsge6 |    .036005   .0434768     0.83   0.408     -.049208    .1212179 
          _cons |   .2700768    .508593     0.53   0.595    -.7267473    1.266901 
----------------+---------------------------------------------------------------- 
        /athrho |          0  (constrained) 
       /lnsigma |  -.1232225   .0341793    -3.61   0.000    -.1902127   -.0562323 
----------------+---------------------------------------------------------------- 
            rho |          0  (omitted) 
          sigma |   .8840669   .0302168                      .8267833    .9453195 
         lambda |          0  (omitted) 
--------------------------------------------------------------------------------- 
Wald test of indep. eqns. (rho = 0): chi2(1) =        .   Prob > chi2 =      .  
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and I can now obtain average partial (marginal) effects for the lognormal hurdle 
model: 
 
. margins, dydx(*) expression(  normal(predict(xbsel) + 
exp([lnsigma]_cons)*tanh([athrho]_cons) ) * exp(predict(xb) + 
.5*exp(2*[lnsigma]_cons))  )  
 
Average marginal effects                          Number of obs   =        753 
Model VCE    : OIM 
 
Expression   : normal(predict(xbsel) + exp([lnsigma]_cons)*tanh([athrho]_cons) ) * 
exp(predict(xb) + .5*exp(2*[lnsigma]_cons)) 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -6.339119    4.23414    -1.50   0.134    -14.63788    1.959643 
        educ |   17.10526   19.35311     0.88   0.377    -20.82614    55.03666 
       exper |   61.03048   6.121516     9.97   0.000     49.03253    73.02843 
         age |  -40.86435   7.183075    -5.69   0.000    -54.94292   -26.78578 
     kidslt6 |  -841.2569   120.3566    -6.99   0.000    -1077.151   -605.3624 
     kidsge6 |  -46.18975   36.40202    -1.27   0.204    -117.5364     25.1569 
------------------------------------------------------------------------------ 
 

There are some interesting differences compared to the partial effects obtained after OLS and 
tobit type I estimation, notice for example that education is no longer statistically significant. 
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6. Exponential Type II Tobit 
 
. heckman lhours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6, 
select(nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6)  
 
Heckman selection model                         Number of obs      =       753 
(regression model with sample selection)        Censored obs       =       325 
                                                Uncensored obs     =       428 
 
                                                Wald chi2(7)       =     35.50 
Log likelihood = -938.8208                      Prob > chi2        =    0.0000 
 
--------------------------------------------------------------------------------- 
         lhours |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
lhours          | 
       nwifeinc |   .0066597   .0050147     1.33   0.184    -.0031689    .0164882 
           educ |  -.1193085   .0242235    -4.93   0.000    -.1667858   -.0718313 
          exper |  -.0334099   .0204429    -1.63   0.102    -.0734773    .0066574 
                | 
c.exper#c.exper |   .0006032   .0006178     0.98   0.329    -.0006077    .0018141 
                | 
            age |   .0142754   .0084906     1.68   0.093    -.0023659    .0309167 
        kidslt6 |   .2080079   .1338148     1.55   0.120    -.0542643    .4702801 
        kidsge6 |  -.0920299   .0433138    -2.12   0.034    -.1769235   -.0071364 
          _cons |   8.670736    .498793    17.38   0.000      7.69312    9.648352 
----------------+---------------------------------------------------------------- 
select          | 
       nwifeinc |  -.0096823   .0043273    -2.24   0.025    -.0181637    -.001201 
           educ |    .119528   .0217542     5.49   0.000     .0768906    .1621654 
          exper |   .0826696   .0170277     4.86   0.000      .049296    .1160433 
                | 
c.exper#c.exper |  -.0012896   .0005369    -2.40   0.016     -.002342   -.0002372 
                | 
            age |  -.0330806   .0075921    -4.36   0.000    -.0479609   -.0182003 
        kidslt6 |  -.5040406   .1074788    -4.69   0.000    -.7146951    -.293386 
        kidsge6 |   .0698201   .0387332     1.80   0.071    -.0060955    .1457357 
          _cons |  -.3656166   .4476569    -0.82   0.414    -1.243008    .5117748 
----------------+---------------------------------------------------------------- 
        /athrho |  -2.131542    .174212   -12.24   0.000    -2.472991   -1.790093 
       /lnsigma |   .1895611   .0419657     4.52   0.000     .1073099    .2718123 
----------------+---------------------------------------------------------------- 
            rho |  -.9722333   .0095403                     -.9858766   -.9457704 
          sigma |   1.208719   .0507247                      1.113279    1.312341 
         lambda |  -1.175157   .0560391                     -1.284991   -1.065322 
--------------------------------------------------------------------------------- 
LR test of indep. eqns. (rho = 0):   chi2(1) =    34.10   Prob > chi2 = 0.0000 
 
 
Very large negative estimate of rho, which is not really credible. Probably a sign of the identification 
problem that often arises when the same regressors are used in the two equations. We probably need 
an exclusion restriction, i.e. a variable entering the selection equation but not the hours equation. Such 
an exclusion restriction may be hard to justify, however. 
 
Average partial (marginal) effects on the next page. Education is now significant again. How proceed? 
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heckman lhours nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6, 
select(nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6)   
 
margins, dydx(*) expression(  normal(predict(xbsel) + 
exp([lnsigma]_cons)*tanh([athrho]_cons) ) * exp(predict(xb) + 
.5*exp(2*[lnsigma]_cons))  )  
 
 
Expression   : normal(predict(xbsel) + exp([lnsigma]_cons)*tanh([athrho]_cons) ) * 
exp(predict(xb) + .5*exp(2*[lnsigma]_cons)) 
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    nwifeinc |  -4.338013   2.551946    -1.70   0.089    -9.339735    .6637086 
        educ |   29.39153    11.8269     2.49   0.013     6.211223    52.57183 
       exper |   33.96181   4.800083     7.08   0.000     24.55382     43.3698 
         age |  -20.34328   5.020793    -4.05   0.000    -30.18385    -10.5027 
     kidslt6 |  -316.1543   80.70819    -3.92   0.000    -474.3395   -157.9692 
     kidsge6 |   2.619054   24.69581     0.11   0.916    -45.78385    51.02196 
------------------------------------------------------------------------------ 



 

 

 

 

 

 

CHAPTER 2:  

CENSORING AND SAMPLE SELECTION  

  



1. Introduction

In this lecture we discuss two types of missing data problems: one posed by censoring, the other posed

by truncation. The lecture is based on the material presented in Wooldridge (2010), chapter 19.1-6, 19.9.

2. Censored and Truncated Models

In a previous lecture we covered in some detail the tobit model as applied to corner solution models. Recall

that a corner solution is an actual economic outcome, e.g. zero expenditure on health by a household in a

given period. In this section we discuss brie�y two close cousins of the corner solution model, namely the

censored regression model and the truncated regression model. The good news is that the econometric

techniques used for censored and truncated dependent variables are very similar to what we have already

studied.

2.1. Data censoring

In contrast to corner solutions, censoring is essentially a data problem. Censoring occurs, for example,

if whenever the dependent variable y exceeds some upper threshold c the actual value of y gets recorded

as equal to c, rather than the true value. Of course, censoring may also occur at the lower end of the

dependent variable.

Top coding in income surveys is the most common example of censoring, however. Such surveys are

sometimes designed so that people with incomes higher than some upper threshold, say $500; 000, are

allowed to respond "more than $500; 000". In contrast, for people with incomes lower than $500; 000 the

actual income gets recorded. If we want to run a regression explaining income based on such data, we

clearly need to deal with the top coding. A reasonable way of writing down the model might be

y� = x� + u;

y = min (y�; c) ,
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where y� is actual income (which is not fully observed due to the censoring), u is a normally distributed

and homoskedastic error term, and y is measured income, which in this example is bounded above at

c = $500; 000 due to the censoring produced by the design of the survey.

You now see that the censored regression is very similar to the corner solution model. In fact, if c = 0

and this is a lower bound, the econometric model for corner solution models and censored regressions

coincide: in both cases we would have the tobit model. If the threshold c is not zero and/or represents

an upper rather than a lower bound on what is observed, then we still use tobit but with a simple (and

uninteresting) adjustment of the log likelihood.

The only substantive di¤erence between censored regressions models and corner solution models lies

in the interpretation of the results. That is, suppose we have two models:

� Model 1: the dependent variable is a corner solution variable, with the corner at zero

� Model 2: the dependent variable is censored below at zero.

We could use exactly the same econometric estimator for both models, i.e. the tobit model.

� In the corner solution model we are probably mainly interested in how the expected value of the

observed dependent variable varies with the explanatory variable(s). This means we should look at

E (yjx; y > 0) or E (yjx), and we have seen how to obtain the relevant marginal e¤ects.

� However, for the censored regression model we are mostly interested in learning how the expected

value of the unobserved and censored variable y� varies with the explanatory variable(s), i.e.

E (y�jx):

E (y�jx) = x�;

and so the relevant partial e¤ect with respect to xj is simply �j .

One �eld in which censored regression models are very common is in the econometric analysis of

duration data. Duration is the time that elapses between the �beginning� and the �end� of some
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speci�ed state. The most common example is unemployment duration, where the �beginning�is the day

the individual becomes unemployed and the �end�is when the same individual gets a new job. Data on

durations are often censored, either to the right (common) or to the left (not so common) or both (even

less common). Right censoring means that we don�t know from the data when a certain duration ended;

left censoring means that we don�t know when it began. I will not cover duration data as part of this

course, but you can �nd an old lecture introducing duration data models on my web page.

2.2. Truncated regression models

A truncated regression model is similar to a censored regression model, but there is one important

di¤erence:

� If the dependent variable is truncated we do not observe any information about a certain segment

in the population.

� In other words, we do not have a representative (random) sample from the population. This can

happen if a survey targets a sub-group of the population. For instance when surveying �rms in

developing countries, the World Bank often excludes �rms with less than 10 employees. Clearly if

we are modelling employment based on such data we need to recognize the fact that �rms with less

than 10 employees are not covered in our dataset.

� Alternatively, it could be that we target poor individuals, and so exclude everyone with an income

higher than some upper threshold c.

� The standard truncated regression model is written

y = x� + u;

where the error term u is assumed normally distributed, homoskedastic and uncorrelated with x

(the latter assumption can be relaxed if we have instruments). Suppose that all observations for

which yi > c are excluded from the sample. Our objective is to estimate the parameter �.
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� See example in appendix, Section 1.

It is clear from the example in the appendix that ignoring the truncation leads to substantial downward

bias in the estimate of �. Fortunately, we can correct this bias fairly easily, by using the normality

assumption in combination with the information about the threshold. The density of y, conditional on

x and y observed, takes a familiar form:

f (yjx;�; 
) =
�
� ((y � x�) =�) =�

� (x�=�)

�
;

and the individual log likelihood contribution is

lnLi = ln [� ((yi � xi�) =�) =�]� ln� (xi�=�)

The conditional expected value of y is also of a familiar form:

E (yjy > 0;x) = x� + �u� (x�=�u)

In Stata we can implement this model using the truncreg command (see appendix).

3. Sample Selection Bias

Up to this point we have assumed the availability of a random sample from the underlying population.

In practice, however, samples may not be random. In particular, samples are sometimes truncated by

economic variables.

Example: Suppose you want to study how education impacts on the wage an individual could poten-

tially earn in the labour market - i.e. the wage o¤er. Your plan is to run a regression in which log wage

is the dependent variable and education is (let�s say) the only explanatory variable. You are primarily

interested in the coe¢ cient �1 on education. Suppose in the population, education is uncorrelated with

the error term ui - i.e. it is exogenous (this can be relaxed, but the model would get more complicated

5



as a result). Thus, with access to a random sample, OLS would be the best estimator.

Suppose your sample contains a non-negligible proportion of unemployed individuals. For these indi-

viduals, there is no information on earnings, and so the corresponding observations cannot be used when

estimating the wage equation (missing values for the dependent variable). Thus you�re looking at having

to estimate the earnings equation based on a non-random sample - what we shall refer to as a selected

sample. Can the parameters of the wage o¤er equation - most importantly � - be estimated without

bias based on the selected sample?

The general answer to that question is: It depends! Whenever we have a selected (non-random)

sample, it is important to be clear on two things:

� Circumstances under which the OLS estimator (or some other estimator ignoring selection) applied

on the selected sample will be su¤er from bias - speci�cally selectivity bias - and circumstances

when it won�t; and

� If there is selectivity bias: how to obtain estimates that are not biased by sample selection.

The most common model accommodating the above sample selection mechanism is one in which

the equation of interest (sometimes referred to as the �structural equation�or the �primary equation�) is

written as

y1 = x1�1 + u1; (3.1)

and we have a separate model determining selection as follows:

y2 = 1 [x�2 + v2 > 0] :

Assumptions:

� (x;y2) are always observed, but y1 is observed only when y2 = 1 (this assumption emphasizes the

sample selection nature of the problem)

� (u1; v2) is independent of x with zero mean (exogeneity)
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� v2~Normal (0; 1) (note: explicit distributional assumption; needed to derive a conditional expecta-

tion given selection, more on this below)

� E (u1jv2) = 
1v2 (linearity; holds e.g. under bivariate normality of (u1; v2); note that, since

V ar (v2) = 1, 
1 is the covariance between u1 and v2.)

3.1. When will there be selection bias, and what can be done about it?

The fundamental issue to consider when worrying about sample selection bias is why some individuals

will not be included in the sample. As we shall see, sample selection bias can be viewed as a special

case of endogeneity bias, arising when the selection process generates endogeneity in the selected

sub-sample.

In our model sample selection bias arises when the error term in the selection equation (i.e. v2) is

correlated with the error term in the primary equation (i.e. u1), i.e. whenever 
1 6= 0.

To see this, we will derive the expression for E (y1jx; y2 = 1), i.e. the expectation of the outcome

variable conditional on observable x and selection into the sample, y2 = 1.

We begin by deriving E (y1jx; v2):

E (y1jx; v2) = x1�1 + E (u1jx; v2)

E (y1jx; v2) = x1�1 + E (u1jv2)

E (y1jx; v2) = x1�1 + 
1v2; (3.2)

where the assumption that (u1; v2) is independent of x enables us to go from the �rst to the second line;

and the linearity assumption for E (u1jv2) enables us to go from the second to the third line.

It is now clear that, if and only if 
1 = 0,

E (y1jx; v2) = E (y1jx) = E (y1jx1) = x1�1;

i.e. in this case there is no sample selection problem. But, if 
1 6= 0, E (y1jx; v2) 6= x1�1.
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Since v2 is not observable, eq (3.2) is not directly usable in applied work (since we can�t condition

on unobservables when running a regression). To obtain an expression for the expected value of y1

conditional on observables x and the actual selection outcome y2, we make use of the law of iterated

expectations and write:

E (y1jx; y2 = 1) = E [E (y1jx; v2) jx; y2 = 1] ;

Hence, using (3.2) we obtain

E (y1jx; y2 = 1) = E [(x1�1 + 
1v2) jx; y2 = 1] ;

E (y1jx; y2 = 1) = x1�1 + 
1E (v2jx; y2 = 1) ;

E (y1jx; y2 = 1) = x1�1 + 
1h (x; y2 = 1) ;

where h (x; y2 = 1) = E (v2jx; y2 = 1) is a function.

The next challenge is to �nd h (x; y2 = 1). Our model and assumptions imply

E (v2jx; y2 = 1) = E (v2jv2 � �x�2) :

Now is the time to use our �useful result�introduced in a previous lecture:

E (eje > c) = � (c)

1� � (c) ; (3.3)

where e follows a standard normal distribution, c is a constant, � denotes the standard normal probability

density function, and � is the standard normal cumulative density function.

Thus

E (v2jv2 � �x�2) =
� (�x�2)

1� � (�x�2)

E (v2jv2 � �x�2) =
� (x�2)

� (x�2)
� � (x�2) ;
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where � (�) is the inverse Mills ratio (see Section 2 in the appendix for a derivation of the inverse Mills

ratio).

We now have a fully parametric expression for the expected value of yi; conditional on observable

variables wi, and selection into the sample (zi = 1):

E (y1jx; y2 = 1) = x1�1 + 
1� (x�2) .

This equation tells us that the expected value of y1, given x1 and observability of y1 (i.e. y2 = 1) is equal

to x1�1, plus an additional term which is the product of the covariance of the error terms 
1 and the

inverse Mills ratio evaluated at x�2. This equation makes it clear that an OLS regression of y1 on x1

using the selected sample omits the term � (x�2) and generally leads to inconsistent estimation of �1.

3.1.1. Exogenous sample selection: E (u1jv2) = 0

However, if the unobservables determining selection are mean-independent of the unobservables deter-

mining the outcome variable of interest, so that E (u1jv2) = 0, there is no problem - we then say that

sample selection is exogenous. Then we can estimate the main equation of interest by means of OLS,

since

E (y1jx; y2 = 1) = x1�1;

hence

y1 = x1�1 + &i;

where &i is a mean-zero error term that is uncorrelated with x1 in the selected sample (recall we assume

exogeneity in the population).

Illustrations:

� Suppose sample selection is randomized (or as good as randomized). Imagine an urn containing a

lots of balls, where 20% of the balls are red and 80% are black, and imagine participation in the
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sample depends on the draw from this urn: black ball, and you�re in; red ball and you�re not. In

this case sample selection is independent of all other (observable and unobservable) factors (indeed

�2 = 0). Sample selection is thus exogenous.

� Suppose the variables in the x-vector a¤ect the likelihood of selection (i.e. �2 6= 0). Hence indi-

viduals with certain observable characteristics are more likely to be included in the sample than

others. Still, we�ve assumed x to be independent of the error term in the main equation, u1, and

so sample selection remains exogenous. In this case also - no problem.

3.1.2. An example

Based on these insights, let�s now think about estimating the following simple wage equation based on a

selected sample.

lnwi = �0 + �1educi + "i;

� Always when worrying about endogeneity, you need to be clear on the underlying mechanisms. So

begin by asking yourself: What factors are likely to go into the error term "i in the wage equation?

Clearly individuals with the same levels of education can obtain very di¤erent wages in the labour

market, and given how we have written the model it follows by de�nition that the error term "i

is the source of such wage di¤erences. To keep the example simple, suppose I�ve convinced myself

that the (true) error term "i consists of two parts:

"i = �1mi + ei;

where mi is personal �motivation�, which is unobserved (note!) and assumed uncorrelated with

education in the population (clearly a debatable assumption, but let�s keep things simple), �1 is a

positive parameter, and ei re�ects the remaining source of variation in wages. Suppose for simplicity

that ei is independent of all variables except wages.

� I now know that the OLS estimator will be biased if the error term in the earnings equation "i is

10



correlated with the error term in the selection equation. Let�s now relate this insight to economics,

sticking to our example. Since motivation (mi) is (assumed) the only economically interesting

part of "i; I thus need to ask myself: Is it reasonable to assume that motivation is uncorrelated

with education in the selected sample? For now, maintain the assumption that motivation and

education are uncorrelated in the population - hence had there been no sample selection, education

would have been exogenous and OLS would have been �ne.

� Still - and this is the key point - I may suspect that selection (denoted here by the dummy z) into

the labour market depends on education and motivation:

zi =

8>><>>:
1 if 
 � educi + (�2mi + �i) � 0

0 otherwise

9>>=>>; ;

where �2 is a positive parameter and �i is an error term independent of all factors except selection.

Because mi is unobserved it will go into the error term, which will consist of the two terms inside

the parentheses (:).

� The big question now is whether the factors determining selection are correlated with the wage

error term "i = �1mi + ei. There are only three terms determining selection. Two of these are

�i and educi; and they have been assumed uncorrelated with "i. But what about motivation,

mi? Abstracting from the uninteresting case where �1 and/or �2 are equal to zero, we see that

i) motivation determines selection; and ii) motivation is correlated with the wage error term since

"i = �1mi + ei. So clearly we have endogenous selection.

� Does this imply that education is correlated with "i in the selected sample? Yes it does. The

intuition as to why this is so is straightforward. Think about the characteristics (education and

motivation) of the people that are included in the sample.

� Someone with a low level of education must have a high level of motivation, otherwise he

or she is likely not to be included in the sample (recall: the selection model implies that

11



individuals with low levels of education and low levels of motivation are those most unlikely

to be included in the sample).

� In contrast, someone with a high level of education is fairly likely to participate in the labour

market even if he or she happens to have a relatively low level of motivation.

� The implication is that, in the sample, the average level of motivation among those with little

education will be higher than the average level of motivation with those with a lot of education. In

other words, education and motivation are negatively correlated in the sample, even though this

is not the case in the population.

� And since motivation goes into the error term (since we have no data on motivation - it�s un-

observed), it follows that education is (negatively) correlated with the error term in the selected

sample. And that�s why we get selectivity bias.

� Illustration: Figure 2 in the appendix.

3.2. How correct for sample selection bias?

I will now discuss the two most common ways of correcting for sample selection bias.

3.2.1. Method 1: Inclusion of control variables

The �rst method by which we can correct for selection bias is simple: include in the regression observed

variables that control for sample selection. In the wage example above , if we had data on motivation,

we could augment the wage model with this variable:

lnwi = �0 + �1educi + �1mi + ei:

More generally, recall that

E (y1jx; v2) = x1�1 + 
1v2;
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and so if you have data on v2, we could just use include this variable in the model as a control variable

for selection and estimate the primary equation using OLS. Such a strategy would completely solve the

sample selection problem.

Clearly this approach is only feasible if we have data on the relevant factors (e.g. motivation), which

may not always be the case. The second way of correcting for selectivity bias is to use the famous Heckit

method, developed by James Heckman in the 1970s.

3.2.2. Method 2: The Heckit method

We saw above that

E (y1jx; y2 = 1) = x1�1 + 
1� (x�2) :

Using the same line of reasoning as for �Method 1�, it must be that if we had data on � (x�2), we could

simply add this variable to the model and estimate by OLS. Such an approach would be �ne. Of course,

in practice you would never have direct data on � (x�2). However, the functional form � (�) is known

- or, rather, assumed (at least in most cases) - and x is observed. If so, the only missing ingredient is

the parameter vector 
1, which can be estimated by means of a probit model. The Heckit method thus

consists of the following two steps:

1. Using all observations - those for which y1 is observed (selected observations) and those for which

it is not - and estimate a probit model where y2 is the dependent variable and x are the explanatory

variables. Based on the parameter estimates �̂2 calculate the inverse Mills ratio for each observation:

�
�
x�̂2

�
=
�
�
x�̂2

�
�
�
x�̂2

� :

2. Using the selected sample, i.e. all observations for which y1 is observed, run an OLS regression in

which y1 is the dependent variable and x1 and �
�
x�̂2

�
are the explanatory variables:

y1 = x1�1 + 
1�
�
x�̂2

�
+ &i.
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This will give consistent estimates of the parameter vector �1. That is, by including the inverse

Mills ratio as an additional explanatory variable, we have corrected for sample selection bias.

Important considerations

� The Heckit procedure gives you an estimate of the parameter 
1, which measures the covariance

between the two error terms u1 and v2. Under the null hypothesis that there is no selectivity

bias, we have 
1 = 0. Hence testing H0 : 
1 = 0 is of interest, and we can do this by means of

a conventional t-test. If you cannot reject H0 : 
1 = 0 then this indicates that sample selection

does not result in signi�cant bias, and so using OLS on the selected sample without including the

inverse Mills ratio is �ne - all this, provided the model is correctly speci�ed (i.e. all the underlying

assumptions hold), of course.

� We assumed above that the vector x (the determinants of selection) contains all variables that go

into the vector x1 (the explanatory variables in the primary equation), and possibly additional

variables. In fact, it is highly desirable to specify the selection equation in such a way that there is

at least one variable that determines selection, and which has no direct e¤ect on y1 conditional on

�
�
x�̂2

�
. In other words, it is important to impose at least one exclusion restriction. The reason is

that if x1 = x, the second stage of Heckit is likely to su¤er from a collinearity problem, with very

imprecise estimates as a result. Recall the form of the regression you run in the second stage of

Heckit:

y1 = x1�1 + 
1�
�
x�̂2

�
+ &i.

Clearly, if x1 = x, then

y1 = x1�1 + 
1�
�
x1�̂2

�
+ &i:

Remember that collinearity arises when one explanatory variable can be expressed as a linear

function of one or several of the other explanatory variables in the model. In the above model

x1 enters linearly (the �rst term) and non-linearly (through inverse Mills ratio), which seems to

14



suggest that there will not be perfect collinearity. However, if you look at the graph of the inverse

Mills ratio (see appendix for the lecture on corner response models) you see that it is virtually

linear over a wide range of values. Clearly had it been exactly linear there would be no way

of estimating

y1 = x1�1 + 
1�
�
x1�̂2

�
+ &i

because x1 would then be perfectly collinear with �
�
x1�̂2

�
. The fact that Mills ratio is virtually

linear over a wide range of values means that you can run into problems posed by severe (albeit not

complete) collinearity. This problem is solved (or at least mitigated) if x contains one or several

variables that are not included in x1. Similar to identi�cation with instrumental variables, the

exclusion restriction has to be justi�ed theoretically in order to be convincing. And that, alas, is

not always straightforward.

� Finally, always remember that in order to use the Heckit approach, you must have data on the

explanatory variables for both selected and non-selected observations. This may not always be the

case.

Quantities of interest Now consider partial e¤ects. Suppose we are interested in the e¤ects of chang-

ing the variable xk. It is useful to distinguish between two quantities of interest:

� The e¤ect of a change on xk on expected yi in the population:

@E (y1jx1�1)
@xk

= �k

For example, if xk is education and y1 is wage o¤er, then �k measures the marginal e¤ect of

education on expected wage o¤er in the population.

� The e¤ect of a change on xk on expected yi for individuals in the population for whom yi is observed:

@E (y1jx1�1; y2 = 1)
@xk

= �k + 
1
@� (x�2)

@xk
:
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Recall that

�0 (c) = �� (c) [c+ � (c)] ;

hence

@E (y1jx1�1; y2 = 1)
@xk

= �k � 
1�k� (x�2) [x�2+� (x�2)] :

It can be shown that c + � (c) > 0, hence if 
1 and �k have the same sign, this partial e¤ect is

lower than that on expected y1 in the population. In the context of education and wage o¤ers, what

is the intuition of this result? [Hint: increase education and less able individuals will work.]

Estimation of Heckit in Stata In Stata we can use the command heckman to obtain Heckit esti-

mates. The syntax has the following form

heckman y x1, select (z1 x1) twostep

where the variable y is missing whenever an observation is not included in the selected sample.

If you omit the twostep option you get results from a full information maximum likelihood (FIML)

estimator. The assumptions underlying this estimator are stronger than those underpinning Heckman�s

two-stage estimator; speci�cally, the requires the error terms u1 and v2 are bivariate normal. Under

bivariate normality, FIML is more e¢ cient; asymptotically, the two methods (FIML and two-step) are

equivalent, but in small samples the results can di¤er. Simulations have taught us that FIML can be

sensitive to mis-speci�cation due to, say, non-normal disturbance terms. In applied work it makes sense

to consider both sets of results.

EXAMPLES: See Section 3 in appendix; replicates the results in example 19.6, Wooldridge (2010, pp.

807-8).
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3.3. Extensions of the Heckit model

3.3.1. Non-continuous outcome variables

We have focused on the case where y1, i.e. the outcome variable in the structural equation, is a continuous

variable. However, sample selection models can be formulated for many di¤erent models - binary response

models, censored models, duration models etc. The basic mechanism generating selection bias remains

the same: correlation between the unobservables determining selection and the unobservables determining

the outcome variable of interest.

Consider the following binary response model with sample selection:

y1 = 1 [x1�1 + u1 > 0]

y2 = 1 [x�2 + v2 > 0] ;

where y1 is observed only if y2 = 1, and x contains x1 and at least one more variable. In this case, probit

estimation of �1 based on the selected sample will generally lead to inconsistent results, unless u1 and

v2 are uncorrelated. Assuming that x is exogenous in the population, we can use a two-stage procedure

very similar to that discussed above:

1. Obtain �2 by estimating the participation equation using a probit model. Construct �
�
x�̂2

�
:

2. Estimate the structural equation using probit, with �
�
x�̂2

�
added to the set of regressors.

This is a good procedure for testing the null hypothesis that there is no selection bias (in which case

�
�
x�̂2

�
is insigni�cant in the structural equation). If, based on this test we decide there is endogenous

selection, we should estimate the two equations of the model simultaneously (in Stata: heckprob). See

Wooldridge, Section 19.6.3 for more details.

Alternatively, it could be that the selection equation is not a binary response model. For exam-

ple, Bourguignon, Fournier and Gurgand consider the case where selection is modelled by means of a
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multinomial logit.1

3.3.2. Endogenous explanatory variables

The techniques discussed above can also be extended to allow for endogeneity in the explanatory variables.

Wooldridge (2010; Section 19.6.2) focuses on the case where there�s a single endogenous explanatory

variable y2; the model looks like this:

y1 = z1�1 + �y2 + u1

y2 = z2�2 + v2

y3 = 1 [z�3 + v3 > 0] ;

where the �rst equation is the structural equation of interest, the second equation is a reduced form

equation for the potentially endogenous explanatory variable y2,. and the third is the selection equation;

(u1; v2; v3) are freely correlated.

Exercise: How would you estimate this model? Be speci�c about what you assume regarding

observability of the variables and the exclusion restrictions. Once you have outlined an answer, compare

it to Wooldridge�s discussion in Section 19.6.2.

3.3.3. Heckit with panel data (optional)

Model:

yit1 = xit1�1 + ci1 + uit1; (Primary equation)

where selection is determined by the equation

sit2 =

8>><>>:
1 if xi
t2 + vit2 � 0

0 otherwise

9>>=>>; : (Selection equation)

1François Bourguignon, Martin Fournier, Marc Gurgand "Selection Bias Corrections Based on the
Multinomial Logit Model: Monte-Carlo Comparisons" DELTA working paper 2004-20, downloadable at
http://www.delta.ens.fr/abstracts/wp200420.pdf

18



� If selection bias arises because ci1 is correlated with vit2, then estimating the main equation using

a �xed e¤ects or �rst di¤erenced approach on the selected sample will produce consistent estimates

of �1.

� However, if corr (vit2; uit1) 6= 0, we can address the sample selection problem using a panel Heckit

approach, where we begin by estimating T di¤erent selection probits (i.e. do not use xtprobit here,

use pooled probit), and compute T inverse Mills ratios, denoted �̂it2:

� Then make a Chamberlain-type assumption:

E (ci1jxi; vit2) = xi�1 + �t1vit2

and regress yit on xit; xi; �̂it2; d2t�̂it2; :::; dTt�̂it2.

� This procedure is a consistent estimator of �1.
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PhD Programme: Econometrics III 
Appendix 
 
1. Illustration: The truncated regression model 
 
Consider a simple simulation, obtained by the following Stata code: 
 
 
clear 
set seed 2355 
set obs 500 
 
ge u=invnorm(uniform()) 
 
ge x=2*uniform() 
 
/* true population model: y = -1 + 1*x + u / 
 
ge y=-1+x+u 
 
/* no truncation */ 
reg y x 
predict yh_ols_nt 
 
/* truncation of y at 0.8*/ 
reg y x if y<.8     
predict yh_ols_t 
 
/* truncated regression corrects for the truncation. ul(.) indicates 
the upper limit */ 
 
truncreg y x, ul(0.8) 
 
 
 

 
Consider three different regressions based on these artificial data: 
 
i)  OLS using the full sample of 500 observations (i.e. no truncation) 
 
. reg y x 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  1,   498) =  156.47 
       Model |  139.883218     1  139.883218           Prob > F      =  0.0000 
    Residual |  445.219899   498  .894015862           R-squared     =  0.2391 
-------------+------------------------------           Adj R-squared =  0.2375 
       Total |  585.103118   499  1.17255134           Root MSE      =  .94552 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .8940591   .0714753    12.51   0.000     .7536288    1.034489 
       _cons |  -.9019037   .0834538   -10.81   0.000    -1.065869   -.7379389 
------------------------------------------------------------------------------ 
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ii)  OLS using the truncated sample of 380 observations  
 
. reg y x if y<.8 
 
      Source |       SS       df       MS              Number of obs =     380 
-------------+------------------------------           F(  1,   378) =   47.00 
       Model |   28.616886     1   28.616886           Prob > F      =  0.0000 
    Residual |  230.164146   378  .608899857           R-squared     =  0.1106 
-------------+------------------------------           Adj R-squared =  0.1082 
       Total |  258.781032   379  .682799556           Root MSE      =  .78032 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .4811388    .070183     6.86   0.000     .3431407    .6191369 
       _cons |  -.8577185   .0732374   -11.71   0.000    -1.001722   -.7137147 
------------------------------------------------------------------------------ 
 
Notice coefficient on x is much lower than the true value of one. It is clearly 
significantly different from one, indicating significant bias.  
 
Figure 3 illustrates the problem of truncation. 
 
 

iii) Truncated regression which corrects for the truncation 
 
. truncreg y x, ul(0.8) 
(note: 120 obs. truncated) 
 
Truncated regression 
Limit:   lower =       -inf                             Number of obs =    380 
         upper =         .8                             Wald chi2(1)  =  37.41 
Log likelihood = -398.51329                             Prob > chi2   = 0.0000 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
eq1          | 
           x |   .8506762   .1390748     6.12   0.000     .5780947    1.123258 
       _cons |  -.7836381   .1214471    -6.45   0.000     -1.02167   -.5456061 
-------------+---------------------------------------------------------------- 
sigma        | 
       _cons |   1.019341    .067624    15.07   0.000     .8868003    1.151882 
------------------------------------------------------------------------------ 
 
Coefficient increases as a result and is similar to the OLS estimate in (i) and 
not significantly different from the true value of 1. 
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Figure 2. The effect of truncation on the OLS estimator 

 
Note: The predications have been generated from the OLS estimates shown in (i) 
and (ii) above. 
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2. Derivation of the Inverse Mills Ratio (IMR) 
 

To show  
)(
)(

)(1
)()|(

c
c

c
cczzE

−Φ
−

=
Φ−

=>
φφ

 

 
 
Assume that z is normally distributed: 

( ) ( ) ( )
z

G z z z dzφ
−∞

= Φ ≡ ∫  

21( ) exp( )
22
zzφ

p
= −  

 
( )G z is the normal cumulative density function (CDF), ( )zφ is the standard normal density 

function. 
 
We now wish to know the ( | )E z z c> . It is the shaded area in the graph below. 
 
 
 

 
                                     c                                                         z 
 
 
 
By the characteristics of the normal curve is equal to[1 ( )]c−Φ . So the density of z  is given by  
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c

z
>
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     ,

)](1[
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c
∫
∞

Φ−
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)](1[
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which can be written using the definitions above as:  
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21( | ) .exp( )
(1 ( )) 22c

z zE z z c dz
c p

∞ −
> =

−Φ ∫  

 
This expression can be written as: 
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c

d zE z z c dz
c dz
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How do we know that:    
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Lets evaluate
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Recall that for the normal distribution )()( cc −= φφ  and )()(1 cc −Φ=Φ−  
 
From which it follows that  
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It is this last expression which is the inverse Mills ratio. 
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Figure 1: The Inverse Mills Ratio 
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3. Empirical illustration of the Heckit model 
 

 
Earnings regressions for females in the US  
 
This section uses the MROZ dataset.1 This dataset contains information on 753 women. 
We observe the wage offer for only 428 women, hence the sample is truncated. 
 
use C:\teaching_gbg07\applied_econ07\MROZ.dta  
 
  
1. OLS on selected sample 
 
reg  lwage educ exper expersq 
 
      Source |       SS       df       MS              Number of obs =     428 
-------------+------------------------------           F(  3,   424) =   26.29 
       Model |  35.0223023     3  11.6741008           Prob > F      =  0.0000 
    Residual |  188.305149   424  .444115917           R-squared     =  0.1568 
-------------+------------------------------           Adj R-squared =  0.1509 
       Total |  223.327451   427  .523015108           Root MSE      =  .66642 
 
------------------------------------------------------------------------------ 
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1074896   .0141465     7.60   0.000     .0796837    .1352956 
       exper |   .0415665   .0131752     3.15   0.002     .0156697    .0674633 
     expersq |  -.0008112   .0003932    -2.06   0.040    -.0015841   -.0000382 
       _cons |  -.5220407   .1986321    -2.63   0.009    -.9124668   -.1316145 
------------------------------------------------------------------------------ 
 
 
  

                                                 
1 Source: Mroz, T.A. (1987) "The sensitivity of an empirical model of married women's hours of work to 
economic and statistical assumptions," Econometrica 55, 765-799. 
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2. Two-step Heckit 
 
. heckman lwage educ exper expersq, select(nwifeinc educ exper expersq age 
kidslt6 kidsge6) twostep 
 
Heckman selection model -- two-step estimates   Number of obs      =       753 
(regression model with sample selection)        Censored obs       =       325 
                                                Uncensored obs     =       428 
 
                                                Wald chi2(6)       =    180.10 
                                                Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
lwage        | 
        educ |   .1090655    .015523     7.03   0.000     .0786411      .13949 
       exper |   .0438873   .0162611     2.70   0.007     .0120163    .0757584 
     expersq |  -.0008591   .0004389    -1.96   0.050    -.0017194    1.15e-06 
       _cons |  -.5781033   .3050062    -1.90   0.058    -1.175904    .0196979 
-------------+---------------------------------------------------------------- 
select       | 
    nwifeinc |  -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378 
        educ |   .1309047   .0252542     5.18   0.000     .0814074     .180402 
       exper |   .1233476   .0187164     6.59   0.000     .0866641    .1600311 
     expersq |  -.0018871      .0006    -3.15   0.002     -.003063   -.0007111 
         age |  -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376 
     kidslt6 |  -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029 
     kidsge6 |    .036005   .0434768     0.83   0.408     -.049208    .1212179 
       _cons |   .2700768    .508593     0.53   0.595    -.7267472    1.266901 
-------------+---------------------------------------------------------------- 
mills        | 
      lambda |   .0322619   .1336246     0.24   0.809    -.2296376    .2941613 
-------------+---------------------------------------------------------------- 
         rho |    0.04861 
       sigma |  .66362876 
      lambda |  .03226186   .1336246 
------------------------------------------------------------------------------ 
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3. Simultaneous estimation of selection model 
 
. heckman lwage educ exper expersq, select(nwifeinc educ exper expersq age 
kidslt6 kidsge6)  
 
Iteration 0:   log likelihood = -832.89777   
Iteration 1:   log likelihood =  -832.8851   
Iteration 2:   log likelihood = -832.88509   
 
Heckman selection model                         Number of obs      =       753 
(regression model with sample selection)        Censored obs       =       325 
                                                Uncensored obs     =       428 
 
                                                Wald chi2(3)       =     59.67 
Log likelihood = -832.8851                      Prob > chi2        =    0.0000 
 
------------------------------------------------------------------------------ 
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
lwage        | 
        educ |   .1083502   .0148607     7.29   0.000     .0792238    .1374767 
       exper |   .0428369   .0148785     2.88   0.004     .0136755    .0719983 
     expersq |  -.0008374   .0004175    -2.01   0.045    -.0016556   -.0000192 
       _cons |  -.5526974   .2603784    -2.12   0.034     -1.06303   -.0423652 
-------------+---------------------------------------------------------------- 
select       | 
    nwifeinc |  -.0121321   .0048767    -2.49   0.013    -.0216903    -.002574 
        educ |   .1313415   .0253823     5.17   0.000     .0815931    .1810899 
       exper |   .1232818   .0187242     6.58   0.000     .0865831    .1599806 
     expersq |  -.0018863   .0006004    -3.14   0.002     -.003063   -.0007095 
         age |  -.0528287   .0084792    -6.23   0.000    -.0694476   -.0362098 
     kidslt6 |  -.8673988   .1186509    -7.31   0.000     -1.09995   -.6348472 
     kidsge6 |   .0358723   .0434753     0.83   0.409    -.0493377    .1210824 
       _cons |   .2664491   .5089578     0.52   0.601    -.7310898    1.263988 
-------------+---------------------------------------------------------------- 
     /athrho |    .026614    .147182     0.18   0.857    -.2618573    .3150854 
    /lnsigma |  -.4103809   .0342291   -11.99   0.000    -.4774687   -.3432931 
-------------+---------------------------------------------------------------- 
         rho |   .0266078   .1470778                     -.2560319    .3050564 
       sigma |   .6633975   .0227075                      .6203517    .7094303 
      lambda |   .0176515   .0976057                     -.1736521    .2089552 
------------------------------------------------------------------------------ 
LR test of indep. eqns. (rho = 0):   chi2(1) =     0.03   Prob > chi2 = 0.8577 
------------------------------------------------------------------------------ 
 



 

 

 

 

 

 

CHAPTER 3:  

COUNT RESPONSES 

 



1. Introduction

A count variable is a variable that takes on nonnegative integer values - e.g. number of times someone

is arrested in a year, number of children ever born to a woman, number of visits to the doctor in a year,

etc. A common feature of count variables is that there is a lower bound at zero.

If y is a count variable and x is a vector of explanatory variables, we are often interested in the

population regression E (yjx).

Using OLS for estimating E (yjx) is certainly an option, however linear models have shortcomings

similar to those for binary responses or corner responses (negative predictions not ruled out etc.). Using

a log transformation solves these problems, however this approach is not very useful if y is often equal to

zero. With count data, it is better to model E (yjx) directly and to choose functional forms that ensure

positivity for any values of x and any parameter values.

In this lecture I provide an introduction to the econometrics of count data models. I draw on Chapter

18.1-18.3 in Wooldridge (2010) and, to a lesser extent, on selected parts in Chapter 20, Cameron and

Trivedi (2005), Microeconometrics.

2. Poisson Regression

Recap: The Poisson Distribution

� The Binomial distribution: If p is the probability of a success and there are n independent trials of

some experiment, then the probability of observing z successes is equal to

f (z) = B (z;n; p) =
n!

z! (n� z)!p
z (1� p)n�z ;

where the coe¢ cient n!
z!(n�z)! , known as the binomial coe¢ cient, captures the fact that there are

n!
z!(n�z)! di¤erent ways of distributing z successes across n independent trials (recall x! is x factorial

(i.e. 4!=4*3*2*1 etc.).
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� The Poisson distribution: Let n ! 1 and p ! 0 but in such a way that np = � > 0 for all n and

p. We get

lim
n!1

B (z;�) =
exp (��)�z

z!
:

One implications is that V ar (z) = �, i.e. the variance of z is equal to its mean.

Poisson regression Poisson regression involves specifying � as a function of x: � = � (x) � E (yjx).

This implies that y given x has a Poisson distribution:

f (yjx) = exp [�� (x)] [� (x)]y =y!

Hence the density of y given x is completely determined by the conditional mean � (x) � E (yjx).

Moreover,

V ar (yjx) = E (yjx) ; (2.1)

which is a testable (and often rejected) restriction in empirical work. We refer to (2.1) as the Poisson-

variance assumption. We return to this assumption later.

Example in appendix: The Poisson distribution for � = 2 and � = 7.

Given a parametric model m (x;�) for � (x), the log likelihood for observation i is

li (�) = log f (yjx)

li (�) = �m (x;�) + yi log (m (x;�))� log (y!) :

Fortunately, we can drop the computationally awkward term log (y!) because it does not depend on the

parameters �, and write the log likelihood simply as

li (�) = �m (x;�) + yi log (m (x;�)) :
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A popular choice for m (:) is the exponential,

m (x;�) = exp (x�) ;

where x1 = 1, yielding

li (�) = � exp (xi�) + yi � xi�:

Other functional forms than the exponential can be used - see Wooldridge (2010), p. 727 for a brief

discussion (punchline: "exponential regression with �exible functions of the explanatory variables is often

adequate").

Interpretation of the parameters Interpretation of the parameters is straightforward. Keeping in

mind that we have now speci�ed

E (yjx) = exp (x�) ;

it follows that

@E (yjx)
@xj

= exp (x�)�j

for continuous xj : Hence the partial e¤ect on E (yjx) depends on x� and the sign of the e¤ect is deter-

mined by the sign of �j . It also follows that

�j =
@E (yjx)
@xj

1

exp (x�)

�j =
@E (yjx)
@xj

1

E (yjx)

�j =
@ logE (yjx)

@xj
;

hence 100 � �j is the semielasticity of E (yjx) with respect to xj ; if we replace xj by log xj , �j is the

elasticity of E (yjx) with respect to xj . E¤ects of dummy variables or variables that enter x in a nonlinear

fashion are easy to write down also (please do).

Computing average partial e¤ects (APEs) of an explanatory variable on the mean is straightforward.
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The sample log likelihood looks like this:

l (�) =
NX
i=1

(� exp (xi�) + yi � xi�) : (2.2)

We maximize the sample log likelihood with respect to the parameters �, hence the �rst-order conditions

can be written
NX
i=1

x0i (� exp (xi�) + yi) = 0;

which shows that the residuals yi � exp (xi�) always sum to zero; hence �y = by, where ŷi = exp
�
xi�̂

�
are the �tted values. The APE referring to xj is thus

1

N

NX
i=1

exp
�
xi�̂

�
�̂j = �y�̂j ,

i.e. simply a product of two scalars. Thus, as a rough comparison with linear model estimates, the

Poisson coe¢ cients can be multiplied by the average outcome �y.

Simple measures of the goodness of �t are the pseudo R-squared (reported by Stata - how is it

de�ned?) or the squared correlation coe¢ cient between the dependent variable and the predictions

exp
�
xi�̂

�
(proposed by Wooldridge; can also be obtained of course by regressing yi on a constant and

exp
�
xi�̂

�
).

Example in appendix: Determinants of Fertility (replication of Example 18.1 in Wooldridge, 2010)

The Poisson-variance assumption Recall the Poisson-variance assumption:

V ar (yjx) = E (yjx)

This is clearly restrictive - and testable. A weaker assumption allows the variance-mean ratio to be a

positive constant, �2:
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V ar (yjx)
E (yjx) = �2

V ar (yjx) = �2E (yjx) :

If �2 > 1 we have overdispersion (relative to the Poisson case), while if �2 < 1 there is underdisper-

sion. Clearly, if �2 6= 1, the Poisson distribution is mis-speci�ed. Does it matter if we have this type of

mis-speci�cation problem or not? Key results as follows:

� If �2 6= 1, the correct log likelihood contribution is not

li (�) = � exp (xi�) + yi � xi�:

Question: What happens if we nevertheless estimate � based on a sample log likelihood function

made up of such individual contributions? Because of the mis-speci�cation, we refer to an estimator

based on (2.2) as the Poisson quasi-maximum likelihood estimator (QMLE). The good news

is that, despite the fact that the likelihood is incorrectly speci�ed, QMLE a consistent estimator of

the parameters of interest. In particular, if we assume that for some value �o,

E (yjx) = m (x;�o) ;

it can be shown that �o is the unique solution to max� E [li (�)].

� However, the conventional formula for computing standard errors is based on the assumption that

�2 = 1, and will generally be incorrect if �2 6= 1. Wooldridge (2010) shown in Section 18.2.3 that

the variance of � with �2 unrestricted can be estimated as

\
Avar

�
�̂
�
= �̂2

 
NX
i=1

r�m̂0
ir�m̂i=m̂i

!�1
; (2.3)
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where the j:th element of the K � 1 vector r�m̂i is equal to

@m̂i

@�j
= xj exp (xi�) ;

(continuing to assume m (:) is exponential). Wooldridge calls the standard errors obtained from

(2.3) GLM (generalized linear model) standard errors. The key point to note here is that �̂2

features in (2.3). But the conventional Poisson regression standard errors assume the variance-mean

ratio is equal to 1 (i.e. �̂2 = 1will be imposed). Hence, if there is overdispersion (�2 > 1), these

standard errors will be overestimated, while if there�s underdispersion they will be underestimated.

� Fortunately, the solution is obvious: once you have obtained the Poisson standard errors, simply

scale them by the square root of �̂2. Alternatively, we may opt for a fully robust asymptotic variance

matrix estimator, which does not require �2 = 1. This has the familiar White-type �sandwich�form

- see eq. (18.14) in Wooldridge (2010) for details.

� If �2 is far from one, predicted conditional probabilities and sampling distributions based on the

Poisson distribution with �2 = 1 imposed can be very misleading.

� It�s now clear that �2 is a parameter of some interest: it tells us whether the Poisson distribution is

correct, and if it isn�t, we can use an estimate of �2 in order to correct the standard errors for the

bias caused by the mis-speci�cation. How, then, do we obtain �̂2? First, note that (unlike OLS) �̂2

is not exactly an estimate of the variance of the di¤erence between yi and exp
�
xi�̂

�
. Remember

the de�nition:

V ar (yjx) = �2E (yjx) .

Appealing to the sample analogy principle using

�2 =
V ar (yjx)
E (yjx)
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as the starting point, we write

�̂2 =
1

N

NX
i=1

û2i =m̂i;

where ûi = yi � m̂i and m̂i = exp
�
xi�̂

�
.

Fertility example continued: Having estimated the Poisson regression, I obtain �̂2 as follows:

predict xb, xb

generate yhat=exp(xb)

generate sig2hat=((children-yhat)^2)/yhat

summarize sig2hat

The sample average of sig2hat is equal to 0.749, and the square root of that (which is my estimate

of �, i.e. �̂) is 0.866 (this estimate is also reported in Table 18.1 in Wooldridge, 2010). Hence, we have

�̂ < 1 implying underdispersion in the data; and the standard errors shown in Table 2.2 should all be

multiplied by 0.866, yielding the GLM standard errors (and obviously higher z statistics). I can obtain

the corrected standard errors using the Stata glm command with scale(x2) added as an option:

glm children educ age agesq evermarr urban electric tv, family(poisson) scale(x2)

Results are shown in Table 2.3.

Once we have obtained reliable estimates of the standard errors, hypothesis testing is straightfor-

ward. Testing a hypothesis regarding an individual parameter is based on the reported z-values; multiple

hypotheses are probably best tested using Wald tests. A (quasi) log likelihood ratio test, de�ned as

follows

QLR � 2
h
logL

�
�̂Unrestricted

�
� logL

�
�̂Restricted

�i
=�̂;

may alternatively be used, but then we really do need to assume V ar (yjx) = �2E (yjx) which, as we

have seen, is not necessary for consistency of the QMLE.

You are encouraged to use the FERTIL2 data to verifying the following statements:

� Fully robust standard errors for the Poisson QMLE are similar to the GLM standard errors
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� If you multiply children by some constant and re-run the Poisson regression, the reported standard

errors will change but the parameter estimates will not.

3. Negative Binomial Regression Models

A popular alternative to Poisson QMLE is full maximum likelihood estimation of the "NegBin I" model

proposed by Cameron and Trivedi (1986). This model is parameterized through the slope parameters �

and an additional parameter to be estimated �2 > 0, where �2 = 1 + �2.

At �rst glance, this may look like an improvement over the Poisson regression in the sense that the

Poisson mean-variance assumption V ar (yjx) = E (yjx) is relaxed. But remember that we don�t really

need this assumption - the Poisson QMLE will be consistent anyway. Moreover, Wooldridge asserts (I

admit to not having studied the proof) that a joint estimator of � and �2 generally is inconsistent if

�2 = 1 + �2 is an incorrect assumption. Therefore, Poisson QMLE is more robust than NegBin I if the

goal is to estimate the parameters �:

What if conditional probabilities need to be estimated? Then we really do need to estimate parameters

summarizing the extent of dispersion in the data, and base our predictions on probabilities more general

than the Poisson function f (yjx) = exp [�� (x)] [� (x)]y =y! NegBin I would be a step in the right

direction, but may not be fully satisfactory either.

A more interesting extension of the Poisson regression is the "NegBin II" model (Cameron and Trivedi,

1986). This model can be derived from a Poisson model with unobserved heterogeneity. Key assumptions:

� Conditional on the vector of observables xi, and an unobserved heterogeneity term ci > 0, yi follows

a Poisson distribution with mean ci exp (xi�).

� ci is independent of xi, and has a gamma distribution with mean equal to 1 and V ar (ci) = �2.
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It can then be shown that

E (yijxi) = exp (xi�)

V ar (yijxi) = exp (xi�) + �
2 [exp (xi�)]

2
;

in other words the variance is a quadratic in the conditional mean. Since �2 > 0 (follows from V ar (ci) =

�2 and V ar (ci) > 0), NegBin II implies overdispersion, increasing with E (yijxi).

Example in appendix: Contacts with medical doctor (Cameron & Trivedi, Microeconometrics, 2005,

section 20.3)

4. A Two-Part Model for Count Responses

Reference: Cameron & Trivedi (2005), Chapter 20.4.5.

For both applications discussed above we observed excess zeros, i.e. the presence of more zeros in

the data than predicted by Poisson or NegBin II. Recall the two-part generalization of the tobit type I

model discussed previously in this course, in which the zero vs. non-zero outcome is modeled separately

from amount di¤erences amongst the positives. This approach can be used for count data too:

� We model the zeros by the density f1 (:), so that Pr (y = 0) = f1 (0), where f1 can be probit, logit

or some other density suitable for modeling binary outcomes.

� We model the positive counts using a truncated density

f2 (yjy > 0) =
f2 (y)

1� f2 (0)
;

which is multiplied by Pr (y > 0) = 1� f1 (0) to ensure the probabilities sum to one.

Thus:

g (y) =

8>><>>:
f1 (0) if y = 0

(1� f1 (0)) f2(y)
1�f2(0) if y > 0

9>>=>>; :
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The probability of observing a zero given the Poisson distribution is easily obtained:

f2 (yjx) = exp [�� (x)] [� (x)]y =y!

implies

f2 (0jx) = exp [�� (x)] ;

hence

1� f2 (0jx) = 1� exp [�� (x)] ;

hence the truncated density for the Poisson model is given by

f2 (y)

1� f2 (0)
=
exp [�� (x)] [� (x)]y

y! (1� exp (�� (x))) : (4.1)

The likelihood function can now be constructed combining terms like (4.1) with probit or logit probability

expressions. Estimation of the two models is done separately. A central object of interest is the partial

e¤ect of xj on E (yijxi). We have

E (yijxi) = Pr (yi = 0jxi) � 0 + Pr (yi > 0jxi)E (yijxi; yi > 0) ;

thus

@E (yijxi)
@xj

= Pr (yi > 0jxi)
@E (yijxi; yi > 0)

@xj
+
@ Pr (yi > 0jxi)

@xj
E (yijxi; yi > 0) :

Partial e¤ects such as this one are straightforward to compute. Obtaining standard errors appears to be

more awkward, however. See Section 4 in the appendix for some results.
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1. The Poisson Distribution: Illustrations 

 
Matlab code:  
z=0:1:15; mu=7; p=exp(-mu)*mu.^z./factorial(z); 
[z' p'] 
 

Some early insights: 

• If your data contain a lot of zeros, then the sample mean should be close to zero, 
or the distribution cannot be Poisson. 

• The distribution is more asymmetric if mu is low  
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2. Determinants of Fertility 

The results in this section replicate and extend the results in example 18.1 in Wooldridge (2010), pp. 
730-32). The dataset is called FERTIL2; it contains information on women in Botswana; summary 
statistics and variable labels as follows: 

 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
    children |      4361    2.267828    2.222032          0         13 
        educ |      4361    5.855996    3.927075          0         20 
         age |      4361    27.40518    8.685233         15         49 
       agesq |      4361      826.46    526.9232        225       2401 
    evermarr |      4361    .4767255    .4995153          0          1 
       urban |      4361    .5166246    .4997808          0          1 
    electric |      4358    .1402019    .3472363          0          1 
          tv |      4359    .0929112    .2903413          0          1 
 
 
              storage  display     value 
variable name   type   format      label      variable label 
--------------------------------------------------------------------------- 
children        byte   %8.0g                  number of living children 
educ            byte   %8.0g                  years of education 
age             byte   %8.0g                  age in years 
agesq           int    %8.0g                  age^2 
evermarr        byte   %9.0g                  =1 if ever married 
urban           byte   %8.0g                  =1 if live in urban area 
electric        byte   %8.0g                  =1 if has electricity 
tv              byte   %8.0g                  =1 if has tv 
 
 

Observation: 

The variance of children is more than twice as high as the mean. This suggests children 
cannot follow an unconditional Poisson distribution. For the Poisson regression model, 
we assume that children, given the explanatory variables, has a Poisson distribution 
(which of course is not the same as assuming children is unconditionally Poisson).  

For a regression model with no explanatory variables, there would be _____-dispersion 
in the children data (fill in the blank). 
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Figure 2: Sample distribution of children. Implied distribution if Poisson and mu=2.27 

 
 
 
 
 
Figure 3: Fertility and Education - Heteroskedasticity 
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2.1 OLS results 
 
. regress children educ age agesq evermarr urban electric tv 
 
      Source |       SS       df       MS              Number of obs =    4358 
-------------+------------------------------           F(  7,  4350) =  893.91 
       Model |  12688.9349     7  1812.70499           Prob > F      =  0.0000 
    Residual |  8821.09719  4350  2.02783843           R-squared     =  0.5899 
-------------+------------------------------           Adj R-squared =  0.5892 
       Total |  21510.0321  4357  4.93689055           Root MSE      =   1.424 
 
------------------------------------------------------------------------------ 
    children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.0644086   .0063199   -10.19   0.000    -.0767987   -.0520184 
         age |   .2724736    .017019    16.01   0.000     .2391077    .3058395 
       agesq |  -.0019067    .000274    -6.96   0.000    -.0024438   -.0013696 
    evermarr |   .6822725    .052167    13.08   0.000     .5799986    .7845463 
       urban |  -.2278933   .0458653    -4.97   0.000    -.3178126    -.137974 
    electric |  -.2617394   .0758688    -3.45   0.001     -.410481   -.1129979 
          tv |  -.2499509   .0901474    -2.77   0.006    -.4266858   -.0732161 
       _cons |   -3.39384   .2445496   -13.88   0.000    -3.873281   -2.914398 
------------------------------------------------------------------------------ 
 
. hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of children 
 
         chi2(1)      =  1873.85 
         Prob > chi2  =   0.0000 
 
. regress children educ age agesq evermarr urban electric tv, robust 
 
Linear regression                                      Number of obs =    4358 
                                                       F(  7,  4350) =  885.79 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.5899 
                                                       Root MSE      =   1.424 
 
------------------------------------------------------------------------------ 
             |               Robust 
    children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.0644086   .0063525   -10.14   0.000    -.0768628   -.0519544 
         age |   .2724736   .0198484    13.73   0.000     .2335606    .3113866 
       agesq |  -.0019067   .0003555    -5.36   0.000    -.0026036   -.0012098 
    evermarr |   .6822725   .0526617    12.96   0.000     .5790287    .7855162 
       urban |  -.2278933   .0447829    -5.09   0.000    -.3156907   -.1400959 
    electric |  -.2617394   .0729908    -3.59   0.000    -.4048385   -.1186404 
          tv |  -.2499509   .0821469    -3.04   0.002    -.4110007   -.0889012 
       _cons |   -3.39384   .2515591   -13.49   0.000    -3.887024   -2.900656 
------------------------------------------------------------------------------ 
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2.2 Results from Poisson regression 
  
. poisson children educ age agesq evermarr urban electric tv 
 
 
Poisson regression                                Number of obs   =       4358 
                                                  LR chi2(7)      =    6167.34 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -6497.0599                       Pseudo R2       =     0.3219 
 
------------------------------------------------------------------------------ 
    children |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.0216645   .0029131    -7.44   0.000     -.027374   -.0159549 
         age |   .3373308   .0099365    33.95   0.000     .3178556     .356806 
       agesq |  -.0041158   .0001453   -28.33   0.000    -.0044006   -.0038311 
    evermarr |    .314751   .0244473    12.87   0.000     .2668352    .3626668 
       urban |  -.0860549   .0216487    -3.98   0.000    -.1284855   -.0436243 
    electric |  -.1205347    .038839    -3.10   0.002    -.1966578   -.0444116 
          tv |  -.1447046   .0473875    -3.05   0.002    -.2375824   -.0518268 
       _cons |  -5.374829   .1628673   -33.00   0.000    -5.694043   -5.055615 
------------------------------------------------------------------------------ 
 
Computing Wooldridge’s R-squared: 
 
. predict xb, xb 
(3 missing values generated) 
 
. ge yhat=exp(xb) 
(3 missing values generated) 
 
. reg children yhat 
 
      Source |       SS       df       MS              Number of obs =    4358 
-------------+------------------------------           F(  1,  4356) = 6468.24 
       Model |  12853.7443     1  12853.7443           Prob > F      =  0.0000 
    Residual |   8656.2878  4356  1.98721024           R-squared     =  0.5976 
-------------+------------------------------           Adj R-squared =  0.5975 
       Total |  21510.0321  4357  4.93689055           Root MSE      =  1.4097 
 
------------------------------------------------------------------------------ 
    children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        yhat |   .9675659   .0120306    80.43   0.000     .9439798     .991152 
       _cons |   .0735461   .0346438     2.12   0.034     .0056267    .1414656 
------------------------------------------------------------------------------ 
 
 

Average partial effects of education: 
 
i) By hand: 
 
predict xb, xb 
 
ge dEy_deduc=_b[educ]*exp(xb) 
 
sum dEy_deduc 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
   dEy_deduc |      4358   -.0491254    .0384582   -.138027  -.0036272 
 
 
[NOTE: Instead of exp(xb), we could just use the sample mean of children] 
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ii) Using margins: 
 
margins, dydx (*) 
 
Average marginal effects                          Number of obs   =       4358 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
dy/dx w.r.t. : educ age agesq evermarr urban electric tv 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.0491254   .0066241    -7.42   0.000    -.0621083   -.0361424 
         age |   .7649159   .0238093    32.13   0.000     .7182506    .8115811 
       agesq |  -.0093329   .0003425   -27.25   0.000    -.0100042   -.0086615 
    evermarr |    .713715   .0558986    12.77   0.000     .6041558    .8232741 
       urban |  -.1951341   .0491288    -3.97   0.000    -.2914247   -.0988436 
    electric |   -.273319   .0881125    -3.10   0.002    -.4460163   -.1006217 
          tv |  -.3281255   .1075044    -3.05   0.002    -.5388303   -.1174206 
------------------------------------------------------------------------------ 
 

Warning: The reported standard errors are NOT correct, since there is 
underdispersion in the data. 

 
2.3 Results from Poisson regression using glm 
 
. glm children educ age agesq evermarr urban electric tv, family(poisson) scale(x2) 
 
Iteration 0:   log likelihood = -6614.4491   
Iteration 1:   log likelihood = -6497.4043   
Iteration 2:   log likelihood = -6497.0599   
Iteration 3:   log likelihood = -6497.0599   
 
Generalized linear models                          No. of obs      =      4358 
Optimization     : ML                              Residual df     =      4350 
                                                   Scale parameter =         1 
Deviance         =   3908.76293                    (1/df) Deviance =  .8985662 
Pearson          =  3265.867362                    (1/df) Pearson  =  .7507741 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
 
                                                   AIC             =  2.985342 
Log likelihood   = -6497.059873                    BIC             = -32543.23 
 
------------------------------------------------------------------------------ 
             |                 OIM 
    children |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.0216645   .0025241    -8.58   0.000    -.0266117   -.0167173 
         age |   .3373308   .0086097    39.18   0.000     .3204561    .3542055 
       agesq |  -.0041158   .0001259   -32.70   0.000    -.0043625   -.0038691 
    evermarr |    .314751   .0211829    14.86   0.000     .2732333    .3562688 
       urban |  -.0860549    .018758    -4.59   0.000    -.1228198     -.04929 
    electric |  -.1205347   .0336529    -3.58   0.000    -.1864933   -.0545762 
          tv |  -.1447046     .04106    -3.52   0.000    -.2251807   -.0642285 
       _cons |  -5.374829     .14112   -38.09   0.000    -5.651419   -5.098239 
------------------------------------------------------------------------------ 
(Standard errors scaled using square root of Pearson X2-based dispersion.) 
 

Note: These standard errors are corrected for underdispersion. margins will now give 
me the right standard errors for the APEs (see next page).  
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. margins, dydx (*) 
 
Average marginal effects                          Number of obs   =       4358 
Model VCE    : OIM 
 
Expression   : Predicted mean children, predict() 
dy/dx w.r.t. : educ age agesq evermarr urban electric tv 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.0491254   .0057396    -8.56   0.000    -.0603747    -.037876 
         age |   .7649159   .0206301    37.08   0.000     .7244817      .80535 
       agesq |  -.0093329   .0002968   -31.44   0.000    -.0099146   -.0087511 
    evermarr |    .713715   .0484345    14.74   0.000      .618785    .8086449 
       urban |  -.1951341   .0425687    -4.58   0.000    -.2785673    -.111701 
    electric |   -.273319    .076347    -3.58   0.000    -.4229564   -.1236815 
          tv |  -.3281255   .0931496    -3.52   0.000    -.5106954   -.1455556 
------------------------------------------------------------------------------  
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3. Contacts with Medical Doctor 

This example is taken from Cameron & Trivedi, Microeconometrics, 2005, section 20.3. The 
dataset is called randdata.dta and can be obtained from: 
 
http://cameron.econ.ucdavis.edu/mmabook/mmadata.html  
 

The main objective of the original research based on these data was to assess how the use of 
health services is affected by types of randomly assigned health insurance (Deb and Trivedi, 
2002). The data file consists of utilization, expenditures, demographic characteristics, health 
status, and insurance status variables. Variable labels and summary statistics as follows: 
 
              storage  display     value 
variable name   type   format      label      variable label 
--------------------------------------------------------------------------- 
mdvis           float  %9.0g                  number face-to-fact md visits 
logc            float  %9.0g                  log(coinsurance+1) 
idp             float  %9.0g                  individual deductible plan 
lpi             float  %9.0g                  log participation incentive 
fmde            float  %9.0g                  function of mdeoff 
physlm          float  %9.0g                  physical limitations -- 
baselin 
disea           float  %9.0g                  count of chronic diseases -- 
ba 
hlthg           float  %9.0g                  good health 
hlthf           float  %9.0g                  fair health 
hlthp           float  %9.0g                  poor health 
linc            float  %9.0g                   
lfam            float  %9.0g                  log of family size 
xage            float  %9.0g                  age that year 
female          float  %9.0g                  female 
child           float  %9.0g                  child 
femchild        float  %9.0g                   
black           float  %9.0g                  black 
educdec         float  %9.0g                  education of decision maker 
 
. summarize mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc 
lfam xage female child femchild black educdec, sep(0) 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
       mdvis |     20186    2.860696    4.504765          0         77 
        logc |     20186    2.383588    2.041713          0   4.564348 
         idp |     20186    .2599822    .4386354          0          1 
         lpi |     20186    4.708827    2.697293          0   7.163699 
        fmde |     20186    4.030322    3.471234          0   8.294049 
      physlm |     20186    .1235247    .3220437          0          1 
       disea |     20186     11.2445    6.741647          0       58.6 
       hlthg |     20186    .3620826    .4806144          0          1 
       hlthf |     20186    .0772813    .2670439          0          1 
       hlthp |     20186    .0149609    .1213992          0          1 
        linc |     20186    8.708167     1.22841          0   10.28324 
        lfam |     20186    1.248404    .5390681          0   2.639057 
        xage |     20186    25.71844    16.76759          0   64.27515 
      female |     20186    .5169424    .4997252          0          1 
       child |     20186    .4014168    .4901972          0          1 
    femchild |     20186    .1937481    .3952436          0          1 
       black |     20186    .1815343    .3827365          0          1 
     educdec |     20186    11.96681    2.806255          0         25 
  

http://cameron.econ.ucdavis.edu/mmabook/mmadata.html
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3.1 Results from Poisson regression 
 
. poisson mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female child femchild black educdec 
 
 
Poisson regression                                Number of obs   =      20186 
                                                  LR chi2(17)     =   13106.07 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -60087.622                       Pseudo R2       =     0.0983 
 
------------------------------------------------------------------------------ 
       mdvis |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.0427332   .0060785    -7.03   0.000    -.0546469   -.0308195 
         idp |  -.1613169   .0116218   -13.88   0.000    -.1840952   -.1385385 
         lpi |   .0128511   .0018362     7.00   0.000     .0092523    .0164499 
        fmde |   -.020613   .0035521    -5.80   0.000     -.027575   -.0136511 
      physlm |   .2684048   .0123624    21.71   0.000     .2441749    .2926347 
       disea |    .023183   .0006081    38.12   0.000     .0219912    .0243749 
       hlthg |   .0394004   .0095884     4.11   0.000     .0206074    .0581934 
       hlthf |   .2531119    .016212    15.61   0.000     .2213369    .2848869 
       hlthp |   .5216034   .0272382    19.15   0.000     .4682176    .5749892 
        linc |   .0834099   .0051656    16.15   0.000     .0732854    .0935343 
        lfam |  -.1296626   .0089603   -14.47   0.000    -.1472245   -.1121008 
        xage |   .0023756   .0004311     5.51   0.000     .0015306    .0032206 
      female |   .3487667   .0113504    30.73   0.000     .3265203     .371013 
       child |   .3361904   .0178194    18.87   0.000     .3012649    .3711158 
    femchild |  -.3625218   .0179396   -20.21   0.000    -.3976827   -.3273608 
       black |  -.6800518   .0155484   -43.74   0.000    -.7105262   -.6495775 
     educdec |   .0176149   .0016387    10.75   0.000     .0144031    .0208268 
       _cons |  -.1898766   .0491731    -3.86   0.000    -.2862541    -.093499 
------------------------------------------------------------------------------  
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3.2 Results from Poisson regression with glm 
 
. glm mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage female 
child femchild black educdec, family(poisson) scale(x2) 
 
Generalized linear models                          No. of obs      =     20186 
Optimization     : ML                              Residual df     =     20168 
                                                   Scale parameter =         1 
Deviance         =  79279.53229                    (1/df) Deviance =  3.930957 
Pearson          =  119800.1596                    (1/df) Pearson  =  5.940111 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
 
                                                   AIC             =  5.955179 
Log likelihood   = -60087.62207                    BIC             = -120640.7 
 
------------------------------------------------------------------------------ 
             |                 OIM 
       mdvis |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.0427332   .0148148    -2.88   0.004    -.0717698   -.0136967 
         idp |  -.1613169   .0283251    -5.70   0.000     -.216833   -.1058007 
         lpi |   .0128511   .0044752     2.87   0.004     .0040799    .0216223 
        fmde |   -.020613   .0086572    -2.38   0.017    -.0375809   -.0036451 
      physlm |   .2684048   .0301301     8.91   0.000     .2093508    .3274588 
       disea |    .023183   .0014821    15.64   0.000     .0202783    .0260878 
       hlthg |   .0394004   .0233693     1.69   0.092    -.0064025    .0852033 
       hlthf |   .2531119   .0395125     6.41   0.000     .1756688    .3305551 
       hlthp |   .5216034   .0663858     7.86   0.000     .3914896    .6517172 
        linc |   .0834099   .0125898     6.63   0.000     .0587343    .1080854 
        lfam |  -.1296626   .0218384    -5.94   0.000     -.172465   -.0868603 
        xage |   .0023756   .0010508     2.26   0.024     .0003161    .0044351 
      female |   .3487667   .0276635    12.61   0.000     .2945471    .4029862 
       child |   .3361904   .0434301     7.74   0.000     .2510688    .4213119 
    femchild |  -.3625218    .043723    -8.29   0.000    -.4482172   -.2768263 
       black |  -.6800518   .0378952   -17.95   0.000     -.754325   -.6057787 
     educdec |   .0176149    .003994     4.41   0.000     .0097869    .0254429 
       _cons |  -.1898766   .1198465    -1.58   0.113    -.4247713    .0450182 
------------------------------------------------------------------------------ 
(Standard errors scaled using square root of Pearson X2-based dispersion.) 
 
 

 

Note: Considerable overdispersion. Adjusting the standard errors makes a big 
difference. 

  

Estimate of 
sigma2hat. 
Much higher 
than 1. 
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margins, dydx (*) 
 
Average marginal effects                          Number of obs   =      20186 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
dy/dx w.r.t. : logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female 
               child femchild black educdec 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.1453519   .0371484    -3.91   0.000    -.2181615   -.0725423 
         idp |   -.425325   .0734597    -5.79   0.000    -.5693033   -.2813467 
         lpi |   .0456313   .0117184     3.89   0.000     .0226636     .068599 
        fmde |  -.0614799   .0216688    -2.84   0.005      -.10395   -.0190098 
      physlm |   .7929485   .0861892     9.20   0.000     .6240208    .9618762 
       disea |   .0747362   .0044514    16.79   0.000     .0660116    .0834609 
       hlthg |   .0188377   .0582752     0.32   0.747    -.0953796     .133055 
       hlthf |   .6825604   .1082641     6.30   0.000     .4703668    .8947541 
       hlthp |   1.226593   .2145904     5.72   0.000     .8060039    1.647183 
        linc |   .2435473   .0249019     9.78   0.000     .1947405    .2923541 
        lfam |  -.3535108   .0558729    -6.33   0.000    -.4630197   -.2440019 
        xage |   .0074759   .0027207     2.75   0.006     .0021435    .0128084 
      female |   1.058397   .0709652    14.91   0.000     .9193082    1.197487 
       child |   .8818771   .1117681     7.89   0.000     .6628157    1.100938 
    femchild |  -1.082205   .1082329   -10.00   0.000    -1.294338   -.8700727 
       black |  -2.047233    .084124   -24.34   0.000    -2.212113   -1.882353 
     educdec |   .0468504   .0100629     4.66   0.000     .0271275    .0665733 
------------------------------------------------------------------------------  
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Figure 3.1: Contacts with Medical Doctor: Observed and Fitted Frequencies based on 
Poisson Regression  
 

 
 
 
 
 

Observations and insights: 
 

• The Poisson regression seriously underpredicts the proportion of zero visits and 
overestimates the proportion of positive number of visits up to seven.  

 
• If our goal is to characterize the distribution of visits to the doctor, the Poisson 

regression is a bad approach. But if we are primarily interested in β, it may not 
be so bad. 
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3.2 Results from NegBin II regression  
 
. nbreg mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female child femchild black educdec 
 
 
Negative binomial regression                      Number of obs   =      20186 
                                                  LR chi2(17)     =    2828.01 
Dispersion     = mean                             Prob > chi2     =     0.0000 
Log likelihood = -42777.611                       Pseudo R2       =     0.0320 
 
------------------------------------------------------------------------------ 
       mdvis |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.0504405   .0128694    -3.92   0.000    -.0756641   -.0252169 
         idp |  -.1475976   .0254099    -5.81   0.000    -.1974001   -.0977951 
         lpi |   .0158351   .0040586     3.90   0.000     .0078805    .0237898 
        fmde |   -.021335   .0075119    -2.84   0.005     -.036058   -.0066119 
      physlm |   .2751715   .0295572     9.31   0.000     .2172404    .3331026 
       disea |   .0259352   .0014827    17.49   0.000     .0230292    .0288412 
       hlthg |   .0065371   .0202235     0.32   0.747    -.0331002    .0461744 
       hlthf |   .2368643   .0374086     6.33   0.000     .1635448    .3101837 
       hlthp |   .4256563   .0741812     5.74   0.000     .2802638    .5710488 
        linc |   .0845165   .0085659     9.87   0.000     .0677277    .1013053 
        lfam |  -.1226764    .019308    -6.35   0.000    -.1605195   -.0848333 
        xage |   .0025943   .0009433     2.75   0.006     .0007455    .0044432 
      female |   .3672884    .024005    15.30   0.000     .3202395    .4143373 
       child |   .3060317   .0385618     7.94   0.000      .230452    .3816115 
    femchild |  -.3755503   .0371392   -10.11   0.000    -.4483418   -.3027587 
       black |  -.7104372   .0274929   -25.84   0.000    -.7643223   -.6565521 
     educdec |   .0162582   .0034846     4.67   0.000     .0094285    .0230879 
       _cons |  -.2069298   .0899431    -2.30   0.021    -.3832151   -.0306445 
-------------+---------------------------------------------------------------- 
    /lnalpha |   .1674206   .0147901                      .1384326    .1964087 
-------------+---------------------------------------------------------------- 
       alpha |   1.182251   .0174856                      1.148472    1.217024 
------------------------------------------------------------------------------ 
Likelihood-ratio test of alpha=0:  chibar2(01) = 3.5e+04 Prob>=chibar2 = 0.000 

 
Observations: 

• The estimate of η2 is reported as alpha: the results thus imply Var(y|x) = 
exp(xb)+1.18*(exp(xb)2).  

• Note that the estimated coefficients are quite similar to what was obtained from 
the simpler Poisson regression.  

• The fit of the data is much better, however. 
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3.3 Results from Zero Inflated NegBin II regression  
 
zinb mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage female 
child femchild black educdec, inf(logc idp lpi fmde physlm disea hlthg hlthf hlthp 
linc lfam xage female child femchild black educdec) 
 
Zero-inflated negative binomial regression        Number of obs   =      20186 
                                                  Nonzero obs     =      13878 
                                                  Zero obs        =       6308 
 
Inflation model = logit                           LR chi2(17)     =    1505.67 
Log likelihood  = -42493.84                       Prob > chi2     =     0.0000 
 
------------------------------------------------------------------------------ 
       mdvis |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
mdvis        | 
        logc |  -.0086059   .0139112    -0.62   0.536    -.0358714    .0186595 
         idp |  -.1686335   .0267574    -6.30   0.000    -.2210771   -.1161899 
         lpi |   .0077349   .0042245     1.83   0.067     -.000545    .0160148 
        fmde |  -.0292258   .0078858    -3.71   0.000    -.0446817   -.0137699 
      physlm |   .2742958   .0296884     9.24   0.000     .2161077    .3324839 
       disea |   .0232821   .0015173    15.34   0.000     .0203082    .0262559 
       hlthg |   .0117103   .0209513     0.56   0.576    -.0293534    .0527741 
       hlthf |   .2254197   .0393802     5.72   0.000      .148236    .3026035 
       hlthp |    .404586   .0746336     5.42   0.000     .2583068    .5508651 
        linc |   .0691123   .0096208     7.18   0.000      .050256    .0879687 
        lfam |  -.1162018   .0205384    -5.66   0.000    -.1564564   -.0759473 
        xage |   .0025331   .0009808     2.58   0.010     .0006107    .0044554 
      female |   .2851505   .0262158    10.88   0.000     .2337686    .3365325 
       child |   .2980832   .0422492     7.06   0.000     .2152763    .3808901 
    femchild |  -.2692997   .0396782    -6.79   0.000    -.3470676   -.1915319 
       black |  -.3630949   .0348303   -10.42   0.000     -.431361   -.2948288 
     educdec |   .0112041   .0036065     3.11   0.002     .0041354    .0182727 
       _cons |    .054865   .0992224     0.55   0.580    -.1396074    .2493374 
-------------+---------------------------------------------------------------- 
inflate      | 
        logc |    .576912   .0744402     7.75   0.000     .4310119    .7228121 
         idp |  -.4390761   .1707392    -2.57   0.010    -.7737188   -.1044333 
         lpi |  -.1550697   .0270002    -5.74   0.000     -.207989   -.1021504 
        fmde |  -.0362254   .0410157    -0.88   0.377    -.1166146    .0441638 
      physlm |  -.1717491   .2139769    -0.80   0.422    -.5911361    .2476379 
       disea |  -.0660192   .0160202    -4.12   0.000    -.0974183   -.0346201 
       hlthg |  -.1785634   .1473313    -1.21   0.226    -.4673275    .1102007 
       hlthf |   .0690902   .2084244     0.33   0.740    -.3394141    .4775946 
       hlthp |  -.3201465   .4916775    -0.65   0.515    -1.283817    .6435236 
        linc |  -.0412511   .0324192    -1.27   0.203    -.1047915    .0222893 
        lfam |   .0454647   .1317032     0.35   0.730    -.2126688    .3035983 
        xage |  -.0076207   .0077923    -0.98   0.328    -.0228933     .007652 
      female |  -1.598575   .2253219    -7.09   0.000    -2.040198   -1.156952 
       child |  -.4843173   .3051426    -1.59   0.112    -1.082386    .1137511 
    femchild |   1.970006   .2701394     7.29   0.000     1.440542    2.499469 
       black |   2.666002   .1846913    14.43   0.000     2.304013     3.02799 
     educdec |  -.0926334   .0224535    -4.13   0.000    -.1366415   -.0486252 
       _cons |  -1.324506   .5758135    -2.30   0.021     -2.45308   -.1959322 
-------------+---------------------------------------------------------------- 
    /lnalpha |    .024474   .0190476     1.28   0.199    -.0128587    .0618067 
-------------+---------------------------------------------------------------- 
       alpha |   1.024776   .0195196                      .9872236    1.063757 
------------------------------------------------------------------------------ 
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. margins, dydx (*) 
 
Average marginal effects                          Number of obs   =      20186 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
dy/dx w.r.t. : logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female 
               child femchild black educdec 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.0950083    .037225    -2.55   0.011    -.1679679   -.0220486 
         idp |  -.4289201   .0727991    -5.89   0.000    -.5716037   -.2862366 
         lpi |   .0410499   .0115475     3.55   0.000     .0184172    .0636827 
        fmde |  -.0792003   .0217921    -3.63   0.000    -.1219121   -.0364885 
      physlm |   .8057607   .0837612     9.62   0.000     .6415917    .9699296 
       disea |   .0746685   .0042856    17.42   0.000     .0662689    .0830681 
       hlthg |   .0552906   .0571903     0.97   0.334    -.0568004    .1673816 
       hlthf |   .6365347    .108132     5.89   0.000     .4245999    .8484695 
       hlthp |   1.196648   .2085426     5.74   0.000      .787912    1.605384 
        linc |   .2027749   .0267022     7.59   0.000     .1504394    .2551103 
        lfam |    -.33802   .0556753    -6.07   0.000    -.4471416   -.2288984 
        xage |   .0081773   .0026603     3.07   0.002     .0029633    .0133914 
      female |   1.010896   .0684784    14.76   0.000     .8766804    1.145111 
       child |    .911955   .1114265     8.18   0.000     .6935631    1.130347 
    femchild |   -1.01086   .1063752    -9.50   0.000    -1.219351   -.8023682 
       black |  -1.364137   .0920164   -14.82   0.000    -1.544486   -1.183789 
     educdec |   .0433583   .0098894     4.38   0.000     .0239753    .0627412 
------------------------------------------------------------------------------ 
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4. Visits to the Doctor: Results from Two-Part Models and Zero-Inflated Models 
 
4.1: Zero truncated Poisson regression and logit  
 
. ztp mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage female 
child femchild black educdec if mdvis>0 
 
Zero-truncated Poisson regression                 Number of obs   =      13878 
                                                  LR chi2(17)     =    4567.77 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -42502.152                       Pseudo R2       =     0.0510 
 
------------------------------------------------------------------------------ 
       mdvis |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.0036367   .0064401    -0.56   0.572     -.016259    .0089857 
         idp |  -.0794352   .0124901    -6.36   0.000    -.1039152   -.0549551 
         lpi |   .0041128   .0019263     2.14   0.033     .0003373    .0078883 
        fmde |  -.0233077   .0037312    -6.25   0.000    -.0306207   -.0159947 
      physlm |   .2256891   .0125523    17.98   0.000     .2010872    .2502911 
       disea |   .0176813   .0006326    27.95   0.000     .0164413    .0189212 
       hlthg |   .0382901   .0100467     3.81   0.000     .0185988    .0579813 
       hlthf |    .206954   .0167213    12.38   0.000     .1741809    .2397271 
       hlthp |   .3998769   .0276018    14.49   0.000     .3457785    .4539754 
        linc |   .0445074   .0053239     8.36   0.000     .0340728     .054942 
        lfam |  -.1157228   .0094271   -12.28   0.000    -.1341995    -.097246 
        xage |    .001439   .0004481     3.21   0.001     .0005608    .0023172 
      female |   .1510196   .0118412    12.75   0.000     .1278113    .1742278 
       child |   .1664605   .0189914     8.77   0.000     .1292381    .2036828 
    femchild |   -.148791   .0188057    -7.91   0.000    -.1856495   -.1119325 
       black |  -.2525526   .0165395   -15.27   0.000    -.2849694   -.2201358 
     educdec |   .0045414   .0016868     2.69   0.007     .0012354    .0078474 
       _cons |    .744609   .0506351    14.71   0.000     .6453661    .8438519 
------------------------------------------------------------------------------ 
 
. logit anyvisit logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female child femchild black educdec 
 
 
Logistic regression                               Number of obs   =      20186 
                                                  LR chi2(17)     =    2774.48 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -11149.911                       Pseudo R2       =     0.1107 
 
------------------------------------------------------------------------------ 
    anyvisit |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        logc |  -.1444157   .0227271    -6.35   0.000      -.18896   -.0998713 
         idp |  -.2838512   .0444716    -6.38   0.000    -.3710139   -.1966885 
         lpi |    .038765   .0073672     5.26   0.000     .0243256    .0532043 
        fmde |  -.0090285   .0135284    -0.67   0.505    -.0355436    .0174867 
      physlm |   .3088853   .0603161     5.12   0.000     .1906678    .4271028 
       disea |   .0350224   .0029613    11.83   0.000     .0292184    .0408265 
       hlthg |    .013004   .0366707     0.35   0.723    -.0588693    .0848773 
       hlthf |   .2039548   .0697303     2.92   0.003     .0672859    .3406238 
       hlthp |   .5762548   .1632094     3.53   0.000     .2563702    .8961394 
        linc |   .0980477   .0146601     6.69   0.000     .0693144     .126781 
        lfam |  -.0856836   .0349847    -2.45   0.014    -.1542525   -.0171148 
        xage |   .0046859   .0017757     2.64   0.008     .0012056    .0081662 
      female |   .8021234   .0446338    17.97   0.000     .7146429     .889604 
       child |   .6311402   .0677326     9.32   0.000     .4983867    .7638937 
    femchild |  -.8717343   .0673375   -12.95   0.000    -1.003713   -.7397553 
       black |  -1.259927   .0443694   -28.40   0.000    -1.346889   -1.172965 
     educdec |    .054107   .0064066     8.45   0.000     .0415503    .0666638 
       _cons |   -1.07807   .1581403    -6.82   0.000    -1.388019   -.7681208 
------------------------------------------------------------------------------ 
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4.2 Partial effect of logc at the average 
 
 
Stata code: 
ztp mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage female 
child femchild black educdec if mdvis>0 
 
margins, predict(cm) atmeans nose 
mat junk=r(b) 
scalar ey1=junk[1,1] 
 
margins, dydx(logc) predict(cm) atmeans  
mat junk=r(b) 
scalar dey1=junk[1,1] 
 
logit anyvisit logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female child femchild black educdec 
 
margins, predict(p) atmeans nose 
mat junk=r(b) 
scalar py1=junk[1,1] 
 
margins, dydx(logc) atmeans  
mat junk=r(b) 
scalar dpy1=junk[1,1] 
 
scalar PEA=py1*dey1+dpy1*ey1 
scalar list PEA 
 
 
. scalar list PEA 
       PEA =  -.1282192 
 

Hence I estimate the PEA with respect to logc at -0.128. This is quite similar to the 
previous estimates. I have now learned, however, that logc primarily seems to affect 
whether there are any visits to the doctor or not; conditional on positives, logc doesn’t 
seem to affect the number of visits. 
 
To determine whether logc is statistically significant, I use bootstrapping – see next 
page.  
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Bootstrapping the standard error of the PEA: 
 
ztp mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage female 
child femchild black educdec if mdvis>0 
 
logit anyvisit logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female child femchild black educdec 
 
keep if e(sample)==1 
 
save tempdat, replace 
mat store=J(100,1,0) 
 
set seed 3246 
qui{ 
forvalues k=1(1)100{ 
noi disp `k' 
use tempdat, clear 
bsample 
 
ztp mdvis logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage female 
child femchild black educdec if mdvis>0 
 
margins, predict(cm) atmeans nose 
mat junk=r(b) 
scalar ey1=junk[1,1] 
 
margins, dydx(logc) predict(cm) atmeans nose 
mat junk=r(b) 
scalar dey1=junk[1,1] 
 
logit anyvisit logc idp lpi fmde physlm disea hlthg hlthf hlthp linc lfam xage 
female child femchild black educdec 
 
margins, predict(p) atmeans nose 
mat junk=r(b) 
scalar py1=junk[1,1] 
 
margins, dydx(logc) atmeans nose 
mat junk=r(b) 
scalar dpy1=junk[1,1] 
 
scalar PEA=py1*dey1+dpy1*ey1 
 
mat store[`k',1]=PEA 
} 
} 
 
svmat store 
tabstat store*, s(sd) 
 
. tabstat store*, s(sd) 
 
    variable |        sd 
-------------+---------- 
      store1 |  .0444498 
------------------------ 
. disp -.1282192/.0444498 
-2.8845844 
 
 

Hence I estimate the PEA with respect to logc at -0.128, and infer from the bootstrapped 
standard error that the effect of logc is statistically significant at the 1% level. 
 
Naturally, one could estimate the two-part model using NebBin II if that is thought more 
appropriate than simple Poisson. 
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